Solar Panel Efficiency in 2023
Solar panel efficiency measures how well solar panels are able to convert sunlight into usable electricity.
Thanks to advances in technology, solar panel efficiency has steadily improved over time. As a result of this increase in the current solar panel efficiency, you can get the same amount of power with fewer panels on your roof, or more power with the same number of solar panels.
This article will explain what solar panel efficiency means, how the average efficiency of solar panels affects power production, the role high-efficiency solar panels play in the clean energy transformation, and more.
What Determines Solar Panel Efficiency?
Your solar panel’s ability to produce energy by converting the sunlight it receives to usable electricity depends upon five crucial factors: materials, wiring, reflection, age, and temperature.
Impact of Materials on Solar Panel Efficiency
Solar panel manufacturers use different substances to create different types of solar panels, including:
- Polycrystalline silicon
- Monocrystalline silicon
- Cadmium telluride
- Multi-junction solar cells
Each solar panel material helps determine how much sunlight will be converted to electricity. Most manufacturers today use monocrystalline silicon solar cell technology for their panels because of their superior efficiency. Monocrystalline photovoltaic (PV) cells are more efficient than other panel types because they are made from a single crystal of silicon, which means electrons can move more easily through the cell.
In addition to existing solar panel materials like silicon, solar companies are exploring other materials that could deliver even more efficient panel technology, including both organic and more recyclable options. (We have a deeper discussion of these developments below.)
Impact of Wiring on Solar Panel Efficiency
Solar panels can be wired in series and in parallel, and the different wiring configurations have an impact on how your solar panel system will function and how much power it can produce. There are advantages and disadvantages to each option, so it’s one of the decisions a solar panel company will make when designing the ideal solar power system for your home.
Wiring also helps determine the right inverter for your solar arrays, whether it’s a string inverter, power optimizer, microinverter, hybrid inverter, or something else entirely. The type of inverter that is used–especially in terms of how power is collected from the panels and sent to your house, battery storage, and electricity grid–can impact your solar panel system’s overall efficiency.
Within the panels themselves, wiring and “busbars” (the metal connecting solar cells in the solar panel that actually captures and transfers electricity) have an effect on efficiency, with more efficient panels using different configurations and different technologies to improve this process.
Impact of Reflection on Solar Panel Efficiency
The amount of light reflected away from a solar cell’s surface impacts solar panel efficiency. Solar panel efficiency depends on the amount of light they can absorb and convert into electricity.
If light reflects off the surface of the panel, it can’t become electricity, which lowers the efficiency of that panel. Solar power panels with textured surfaces and anti-reflection coatings can help minimize the amount of light that gets reflected away.
Impact of Age on Solar Panel Efficiency
The average lifespan of solar panels is about 25 to 30 years. Throughout this period, your solar system should generate all the electricity you need to power your home, unless the panels get blocked by too much shade, dirt, or other debris.
However, during that 25- to 30-year timeframe, your panel efficiency will slowly decrease over time, until they eventually reach a point where the solar panels don’t create enough electricity for all of your home’s needs. This degradation rate is factored into the initial design of a solar power system, but it still impacts your solar panel’s efficiency.
Impact of Temperature on Solar Panel Efficiency
The climate of your area impacts solar panel efficiency, as the energy levels of electrons are determined by their level of excitement. Contrary to what you might think, solar panels are more efficient at lower temperatures. Because the electrons on the thin layer of silicon are calmer and less excited, they can move with greater ease and increased numbers through the transmission lines to generate solar power.
When it is hot, the electrons are more excited and moving in different directions. This makes it more challenging for them to move effectively through the transmission lines, leading to lower solar energy production levels during a hot day.
In other words, you will experience higher voltage and enhanced generation efficiency during a cold sunny day compared to a hot sunny day.
How To Calculate Solar Panel Efficiency
The easiest way to calculate the efficiency of your solar panels is with this formula:
Efficiency (%) = (Pmax ÷ Area) ÷ (1000) x 100%

- Pmax = max solar panel power (in Watts)
- Area = length x width of the solar panel (in m2)
- 1000 = Standard Test Condition (STC) irradiance
Let’s break it down a bit for deeper comprehension.
Find your panel’s max power capacity
You can find this information labeled as Pmax or maximum power on the spec sheet for your solar panels.
Get your panel’s physical dimensions
The standard panel dimensions are 65 inches by 39 inches, but you can also find and verify this information for your own panels–specifically, length and width–on the specification sheet.

Calculate the power unit area of your panel
To get the power unit area of your module, divide its Pmax into its area.
Factor in the STC
Standard Test Condition (STC) represents the ideal environment used by solar manufacturers when testing average solar panel output. These conditions include a cell temperature of 25 °C and air mass of 1.5, and solar irradiance of 1000 W/m2. That value of 1000 W/m2 is what’s used in the efficiency equation.
Calculate solar panel efficiency
Using some sample numbers, we can walk through the math. Assuming your solar panels are 2 m2 in area, produce 400 watts, and receive 1,000 W/m2 of sunlight, the efficiency of your solar panels is 20%.
Efficiency (%) = (400 ÷ 2) ÷ (1000) x 100%
What Determines Solar Panel Efficiency?
The top solar manufacturers are constantly investing millions in research and development, with the goal of improving their photovoltaic cells. However, this has paid off over time:
- Back in 1990, solar panels could only convert around 10% of sunlight into electricity.
- As of 2021, the most efficient solar panels in the market are approaching 23% efficiency.
- In other words, solar panels can now produce 2.3 times more energy with a given space, compared with how they performed 30 years ago.
The efficiency of solar cells is determined by the photovoltaic material, and also how the module is wired and designed overall. Monocrystalline cells are more efficient, since they’re made of single silicon crystals of high purity. On the other hand, polycrystalline cells are made of multiple crystals, and this impacts their efficiency.
This does not mean that polycrystalline solar panels have a lower quality. They have a lower conversion efficiency due to their material properties, but there are high-quality solar modules of both types.
What Are PERC Solar Cells?
Many of the top-performing panels that are currently available use PERC technology, which increases productivity by up to 12%. PERC stands for Passivated Emitter and Rear Contact, and these cells have many design features that boost their efficiency.
- PERC cells have a reflective layer below them. sunlight that goes through is reflected back into the photovoltaic material, generating more power.
- They also have anti-reflective coatings and surface textures that maximize the sunlight captured and converted into electricity.
PERC cells are often cut in half to reduce their electrical resistance losses, further increasing their power output. You will notice that many solar panels are now using 120 or 144 half-cells, instead of the traditional 60-cell and 72-cell designs. Since solar cells are cut in half, their total space requirements are almost the same and panel dimensions are not affected significantly.
How High-Efficiency Solar Panels Save Space
As the efficiency of photovoltaic cells continues to increase, solar panels will be capable of generating more watts per square foot.
- A 400W solar panel that measures 80” x 40” is producing 18W per sf.
- With an efficiency increase of 33%, it would be possible to generate 24W per sf.
Generally, having space for solar panels is not an issue in buildings like shopping malls and distribution centers. However, multi-story buildings have a large floor area relative to their roof area. and plenty of the available space is already used by HVAC equipment. In these cases, high-efficiency solar panels will maximize the kWh output per square foot covered.
RD has also reduced the cost of solar panels. You could expect to pay more than 10,000 per kW of capacity 20 years ago, but now home solar systems cost less than 3,000 per kW in many parts of the US. Even lower are possible in the utility sector, where solar arrays are being installed for less than 450,000 per kW.
How Does Weather Affect Solar Panel Efficiency?
Even in below-freezing weather, solar panels turn sunlight into electricity. That’s because solar panels absorb energy from our sun’s abundant light, and not from the sun’s heat. In fact, cold climates are actually optimal for solar panel efficiency. 7 As long as sunlight is hitting a solar panel, it will generate electricity. Less output during the winter months will primarily be due to shorter daylight hours, or possibly heavy snow.
This doesn’t mean that solar panel output will decrease in warmer weather; any diminished efficiency is balanced out thanks to more daylight hours during the spring and summer months. 7
Do Solar Panels Work in Rain and Snow?
If your winters look cloudy, rainy, snowy, or all of the above, not to worry. Solar panels can still generate electricity under these conditions, too. While solar panels are most productive in direct sunlight, they can still use diffuse or indirect sunlight (radiation) to generate energy. 8
Even though energy production decreases with increasingly dense Cloud cover, panels continue working to a greater capacity than one may expect. Rain also helps wash away dust on panels to keep them operating efficiently. 9

During times of heavy snow accumulation, solar panels’ dark, reflective glass accelerates snow melt so that it slides off before it can hamper performance. Rooftop solar panels are also typically tilted up at 30 to 45 degrees, which keeps snow from accumulating, but only to a point. 11 In comparison, a light dusting of snow is likely to blow off or disappear rapidly.
In fact, on cold, clear days, snow from the ground can reflect extra sunlight onto your solar panels like a mirror. This “albedo effect” enables panels to produce even more electricity in the cold. 10
If your panels require more than a routine hosing down or require you to get on the roof, we highly urge you to contact a trusted solar provider to receive professional assistance.
Three Tips on Maintaining Solar Panel Efficiency
While solar panels generally require little maintenance, it’s still important to inspect your solar panels from time to time and monitor their performance. Here are a few tips to ensure your solar installation is working at its full capacity: 12
-
Keep your panels clear of debris and other damaging materials. While rain is generally sufficient to keep your panels clean, you may want to consider a professional cleaning if you ever notice your panels aren’t working at their full capacity.
Energy Efficiency vs. Cost Efficiency
While solar panel efficiency is important to consider, cost efficiency will likely be the most relevant factor in your search for a home solar panel system. Sunrun ensures you have a cost-efficient system in three ways:
-
We only recommend solar if it has the potential to save you money. Sunrun will help you determine whether a solar panel system has the potential to cut the cost of your current electricity rates. Our easy-to-use Product Selector will ask you for your average monthly electricity bill so our Solar Advisors can determine if solar makes financial sense for you.
The Orientation, Inclination, Latitude of the place and Climatic conditions
The installation of the photovoltaic modules must take into account some factors to take full advantage of solar radiation: the orientation, the inclination, the latitude of the place, the climatic conditions. The correct consideration of these variants will help ensure that they produce maximum energy by being exposed to the greatest intensity of solar radiation for the longest period of time. Learn more.
OM services help with the management of the implementation of certain processes to avoid or mitigate potential hazards and to guarantee the optimal return on investment. Operations mainly consist of the remote monitoring and control of the PV power plant conditions and performance. Monitoring software provides access to all data collected, which can be used for different purposes: defect detection, performance analysis, improvement, predictive maintenance, and security. A good monitoring system will provide information on the production, alarms, and analytical data, in a timely, efficient, and precise manner to detect any anomaly of the PV plant. Continue reading.
Maintenance
Solar panels are very durable, main warranties last for 15-25 years. However, cleaning solar panels is important to maximize the amount of light available to turn into electrical power. Making frequent physical inspections can help solar panels absorbing light effectively.
archelios™ Suite is a comprehensive software solution that offers a unique approach. Thanks to its advanced computational technology, archelios™ Suite adds value to the life-cycle of any PV project: feasibility and profitability study, simulation, calculation of producible energy, complete electrical sizing, operation, and monitoring.
The software is an efficient tool for any type of PV project.
DO YOU WANT TO KNOW MORE?
Trace Software – Empowering electrical solutions. Check out: Webinars eSHOP Sales Linkedin
Share this entry
Just read this article and I can say these are awesome great tips on how to take care of your Fort Sill Solar Panel Installation. I will be using this tips for my own clients so that there Fort Sill Solar Panel Installation in Fort Mill, SC go smoothly! Reply
Leave a Reply Cancel reply
This site uses Akismet to reduce spam. Learn how your comment data is processed.
Trace Software
This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
Cookie and Privacy Settings
We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.
Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to deliver the website, refusing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.

We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.
We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.
Check to enable permanent hiding of message bar and refuse all cookies if you do not opt in. We need 2 cookies to store this setting. Otherwise you will be prompted again when opening a new browser window or new a tab.
These cookies collect information that is used either in aggregate form to help us understand how our website is being used or how effective our marketing campaigns are, or to help us customize our website and application for you in order to enhance your experience.
If you do not want that we track your visit to our site you can disable tracking in your browser here:
We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.
Google reCaptcha Settings:
Vimeo and YouTube video embeds:
The following cookies are also needed. You can choose if you want to allow them: