Skip to content
Choosing the Right Solar Charge Controller/Regulator. Solar voltage controller

Choosing the Right Solar Charge Controller/Regulator. Solar voltage controller

    Solar Charge Controller Types, Functionality and Applications

    A solar charge controller is fundamentally a voltage or current controller to charge the battery and keep electric cells from overcharging. It directs the voltage and current hailing from the solar panels setting off to the electric cell. Generally, 12V boards/panels put out in the ballpark of 16 to 20V, so if there is no regulation the electric cells will damage from overcharging. Generally, electric storage devices require around 14 to 14.5V to get completely charged. The solar charge controllers are available in all features, costs, and sizes. The range of charge controllers is from 4.5A and up to 60 to 80A.

    Types of Solar Charger Controller:

    • Simple 1 or 2 stage controls
    • PWM (pulse width modulated)
    • Maximum power point tracking (MPPT)

    Simple 1 or 2 Controls: It has shunt transistors to control the voltage in one or two steps. This controller basically just shorts the solar panel when a certain voltage is arrived at. Their main genuine fuel for keeping such a notorious reputation is their unwavering quality – they have so not many segments, there is very little to break.

    PWM (Pulse Width Modulated): This is the traditional type charge controller, for instance, anthrax, Blue Sky, and so on. These are essentially the industry standard now.

    Maximum power point tracking (MPPT): The MPPT solar charge controller is the sparkling star of today’s solar systems. These controllers truly identify the best working voltage and amperage of the solar panel exhibit and match that with the electric cell bank. The outcome is extra 10-30% more power out of your sun oriented cluster versus a PWM controller. It is usually worth the speculation for any solar electric systems over 200 watts.

    Features of Solar Charge Controller:

    • Protects the battery (12V) from overcharging
    • Reduces system maintenance and increases battery lifetime
    • Auto charged indication
    • Reliability is high
    • 10amp to 40amp of charging current
    • Monitors the reverse current flow

    The function of the Solar Charge Controller:

    The most essential charge controller basically controls the device voltage and opens the circuit, halting the charging, when the battery voltage ascents to a certain level. charge controllers utilized a mechanical relay to open or shut the circuit, halting or beginning power heading off to the electric storage devices.

    Generally, solar power systems utilize 12V of batteries. Solar panels can convey much more voltage than is obliged to charge the battery. The charge voltage could be kept at the best level while the time needed to completely charge the electric storage devices is lessened. This permits the solar systems to work optimally constantly. By running higher voltage in the wires from the solar panels to the charge controller, power dissipation in the wires is diminished fundamentally.

    The solar charge controllers can also control the reverse power flow. The charge controllers can distinguish when no power is originating from the solar panels and open the circuit separating the solar panels from the battery devices and halting the reverse current flow.


    In recent days, the process of generating electricity from sunlight is having more popularity than other alternative sources and the photovoltaic panels are absolutely pollution free and they don’t require high maintenance. The following are some examples of where solar energy is utilizing.

    • Street lights use photovoltaic cells to convert sunlight into DC electric charge. This system uses a solar charge controller to store DC in the batteries and uses it in many areas.
    • Home systems use a PV module for house-hold applications.
    • A hybrid solar system uses for multiple energy sources for providing full-time backup supply to other sources.

    Example of Solar Charge Controller:

    From the below example, in this, a solar panel is used to charge a battery. A set of operational amplifiers are used to monitor panel voltage and load current continuously. If the battery is fully charged, an indication will be provided by a green LED. To indicate undercharging, overloading, and deep discharge condition a set of LEDs are used. A MOSFET is used as a power semiconductor switch by the solar charge controller to ensure the cut offload in low condition or overloading condition. The solar energy is bypassed using a transistor to a dummy load when the battery gets full charging. This will protect the battery from overcharging.

    This unit performs 4 major functions:

    • Charges the battery.
    • It gives an indication when the battery is fully charged.
    • Monitors the battery voltage and when it is minimum, cuts off the supply to the load switch to remove the load connection.
    • In case of overload, the load switch is in off condition ensuring the load is cut off from the battery supply.

    A solar panel is a collection of solar cells. The solar panel converts solar energy into electrical energy. The solar panel uses Ohmic material for interconnections as well as the external terminals. So the electrons created in the n-type material passes through the electrode to the wire connected to the battery. Through the battery, the electrons reach the p-type material. Here the electrons combine with the holes. When the solar panel is connected to the battery, it behaves like other battery, and both the systems are in series just like two batteries connected serially. The solar panel has totally consisted of four process steps overload, under charge, low battery, and deep discharge condition. The out from the solar panel is connected to the switch and from there the output is fed to the battery. And setting from there it goes to the load switch and finally at the output load. This system consists of 4 different parts-over voltage indication and detection, overcharge detection, overcharge indication, low battery indication, and detection. In the case of the overcharge, the power from the solar panel is bypassed through a diode to the MOSFET switch. In case of low charge, the supply to MOSFET switch is cut off to make it in off condition and thus switch off the power supply to the load.

    Solar energy is the cleanest and most available renewable energy source. Modern technology can harness this energy for a variety of uses, including producing electricity, providing light and heating water for domestic, commercial or industrial applications.

    Choosing the Right Solar Charge Controller/Regulator

    A solar charge controller (frequently called a regulator) is similar to a regular battery charger, i.e. it regulates the current flowing from the solar panel into the battery bank to avoid overcharging the batteries. (If you don’t need to understand the why’s, scroll to the end for a simple flow chart). As with a regular quality battery charger, various battery types are accommodated, the absorption voltage, float voltage can be selectable, and sometimes the time periods and/or the tail current are also selectable. They are especially suited for lithium-iron-phosphate batteries as once fully charged the controller then stays at the set float or holding voltage of around 13.6V (3.4V per cell) for the remainder of the day.

    The most common charge profile is the same basic sequence used on a quality mains charger, i.e. bulk mode absorption mode float mode. Entry into bulk charge mode occurs at:

    • sunrise in the morning
    • if the battery voltage drops below a defined voltage for more than a set time period, e.g. 5 seconds (re-entry)

    This re-entry into bulk mode works well with lead-acid batteries as the voltage drop and droop is worse than it is for lithium-based batteries which maintain a higher more stable voltage throughout the majority of the discharge cycle.

    Lithium batteries

    Lithium batteries (LiFePO4) do not benefit from re-entry into a bulk mode during the day as the internal impedance of the lithium batteries increases at high (and low) states of charge as indicated by the orange vertical lines in the chart below and it is only necessary to occasionally balance the cells which can only be done around the absorption voltage. A related reason is to avoid the Rapid and large variation in voltage that will occur in these regions as large loads are switched on and off.

    Lithium batteries do not have a defined “float voltage”, and therefore the “float voltage” of the controller should be set to be at or just below the “charge knee voltage” (as indicated in the chart below) of the LiFePO4 charge profile, i.e. 3.4V per cell or 13.6V for a 12V battery. The controller should hold this voltage for the remainder of the day after bulk charging the battery.

    The Difference Between PWM and MPPT Solar Charge Controllers

    The crux of the difference is:

    • With a PWM controller, the current is drawn out of the panel at just above the battery voltage, whereas
    • With an MPPT solar charge controller the current is drawn out of the panel at the panel “maximum power voltage” (think of an MPPT controller as being a “Smart DC-DC converter”)

    You often see slogans such as “you will get 20% or more energy harvesting from an MPPT controller”. This extra actually varies significantly and the following is a comparison assuming the panel is in full sun and the controller is in bulk charge mode. Ignoring voltage drops and using a simple panel and simple math as an example:

    Battery voltage = 13V (battery voltage can vary between say 10.8V fully discharged and 14.4V during absorption charge mode). At 13V the panel amps will be slightly higher than the maximum power amps, say 5.2A

    With a PWM controller, the power drawn from the panel is 5.2A 13V = 67.6 watts. This amount of power will be drawn regardless of the temperature of the panel, provided that the panel voltage remains above the battery voltage.

    With an MPPT controller the power from the panel is 5.0A 18V = 90 watts, i.e. 25% higher. However this is overly optimistic as the voltage drops as temperature increases; so assuming the panel temperature rises to say 30°C above the standard test conditions (STC) temperature of 25°C and the voltage drops by 4% for every 10°C, i.e. total of 12% then the power drawn by the MPPT will be 5A 15.84V = 79.2W i.e. 17.2% more power than the PWM controller.

    In summary, there is an increase in energy harvesting with the MPPT controllers, but the percentage increase in harvesting varies significantly over the course of a day.


    A PWM (pulse width modulation) controller can be thought of as an (electronic) switch between the solar panels and the battery:

    • The switch is ON when the charger mode is in bulk charge mode
    • The switch is “flicked” ON and OFF as needed (pulse width modulated) to hold the battery voltage at the absorption voltage
    • The switch is OFF at the end of absorption while the battery voltage drops to the float voltage
    • The switch is once again “flicked” ON and OFF as needed (pulse width modulated) to hold the battery voltage at the float voltage

    Note that when the switch is OFF the panel voltage will be at the open-circuit voltage (Voc) and when the switch is ON the panel voltage will be at the battery voltage voltage drops between the panel and the controller.

    The best panel match for a PWM controller:

    The best panel match for a PWM controller is a panel with a voltage that is just sufficiently above that required for charging the battery and taking temperature into account, typically, a panel with a Vmp (maximum power voltage) of around 18V to charge a 12V battery. These are frequently referred to as a 12V panel even though they have a Vmp of around 18V.

    choosing, right, solar, charge, controller


    The MPPT controller could be considered to be a “Smart DC-DC converter”, i.e. it drops the panel voltage (hence “house panels” could be used) down to the voltage required to charge the battery. The current is increased in the same ratio as the voltage is dropped (ignoring heating losses in the electronics), just like a conventional step-down DC-DC converter.

    The “Smart” element in the DC-DC converter is the monitoring of the maximum power point of the panel which will vary during the day with the sun strength and angle, panel temperature, shading, and panel(s) health. The “smarts” then adjust the input voltage of the DC-DC converter – in “engineering speak” it provides a matched load to the panel.

    The best panel match for an MPPT controller:

    • The panel open circuit voltage (Voc) must be under the permitted voltage.
    • The VOC must be above the “start voltage” for the controller to “kick in”
    • The maximum panel short circuit current (Isc) must be within the range specified
    • The maximum array wattage. some controllers allow this to be “over-sized”, e.g the Redarc Manager 30 is permitted to have up to 520W attached

    Choosing the Right Solar Controller/Regulator

    The PWM is a Good Low-Cost Option:

    f or solar panels with a maximum power voltage (Vmp) of up to 18V for charging a 12V battery (36V for 24V battery, etc).

    When the solar array voltage is substantially higher than the battery voltage e.g. using house panels, for charging 12V batteries

    An MPPT controller will yield higher returns compared with a PWM controller as the panel voltage increases. I.e. a 160W panel using 36 conventional monocrystalline cells with a maximum power amp of 8.4A will provide around 8.6A at 12V; while the 180W panel having 4 more cells will provide the same amperage but 4 additional cells increases the panel voltage by 2V. A PWM controller will not harvest any additional energy, but an MPPT controller will harvest an additional 11.1% (4 / 36) from the 180W panel.

    For the same principle, all panels using SunPower cells with more than 32 cells require an MPPT charge controller otherwise a PWM controller will harvest the same energy from 36, 40, 44 cell panels as it does from a 32 cell panel.

    Solar Charge Controller Features and Options

    Boost MPPT Controllers

    “Boost” MPPT charge controllers allow batteries to be charged that has a higher voltage than the panel.

    Combined MPPT and DC-DC Chargers

    The MPPT function is a natural adjunct to the DC-DC charger function and there are several quality brands that provide this with more under development. A single unit can be used by itself, as it automatically switches between alternator charging and solar charging. For larger systems, our favoured arrangement is to use a separate MPPT controller for the fixed roof-mounted panels and use the combined MPPT/DC-DC with portable panels. In this case, an Anderson connector is placed on the exterior of an RV which is then wired to the solar input of the MPPT/DC-DC unit.

    Note that the battery capacity must be sufficient so that the combined charging current from simultaneous charging from the alternator and the roof solar panels does not exceed the manufacturer’s recommended maximum charging current.

    Cheaper Options

    Cheap controllers may be marked as an MPPT but testing has shown that some are in fact PWM controllers. Cheap controllers may not have the over-voltage battery protection which could result in the battery being overcharged with potential damage to the battery; caution is recommended. Normally, due to the increased circuitry, MPPT solar charge controllers will be physically larger than PWM solar charge controllers.

    Multiple Solar Chargers

    Properly wired, it is possible to add multiple solar chargers (any combination of type and rating) to charge a battery. Proper wiring means that each solar charger is wired separately and directly to the battery terminals. This ideal case means that each controller will “see” the battery voltage and is unaffected by the current flow coming from other charge controllers. This situation is no different from charging a battery from the grid/generator at the same time as charging from solar. With modern controllers, the current will not flow backwards from the battery to the controller (excepting a very small quiescent current).

    What is a solar charge controller and why are they important?

    As the name suggests, a solar charge controller is a component of a solar panel system that controls the charging of a battery bank. Solar charge controllers ensure the batteries are charged at the proper rate and to the proper level. Without a charge controller, batteries can be damaged by incoming power, and could also leak power back to the solar panels when the sun isn’t shining.

    Solar charge controllers have a simple job, but it’s important to learn about the two main types, how they work, and how to pair them with solar panels and batteries. Armed with that knowledge, you’ll be one step closer to building an off-grid solar system!

    Find out how much you can save by installing solar

    Key takeaways

    • Solar charge controllers allow batteries to safely charge and discharge using the output of solar panels.
    • A charge controller is needed any time a battery will be connected to the direct current (DC) output of solar panels; most often in small off-grid systems.
    • The two kinds of charge controllers are pulse-width modulation (PWM) and maximum power point tracking (MPPT).
    • PWM charge controllers are less expensive, but less efficient, and are best suited for small off-grid systems with a few solar panels and batteries.
    • MPPT charge controllers are more expensive and more efficient, and are good for larger off-grid systems that can power a small home or cabin.
    • The top off-grid charge controllers are made by brands like Victron, EPEVER, and Renogy, but non-brand-name charge controllers can be just fine if you know what to look for.

    Who needs a solar charge controller?

    A charge controller is necessary any time a battery bank will be connected to the direct current (DC) output of solar panels. In most cases, this means a small off-grid setup like solar panels on an RV or cabin. If you’re looking for information on how to use solar and batteries off the grid, you’re in the right place!

    There are also charge controllers aimed at providing battery backup for an existing grid-tied solar system that is on the roof of a home or business. This application requires a high-voltage charge controller and usually involves rewiring the system to direct a portion of the solar output through the charge controller.

    How does a solar charge controller work?

    Fair warning before we get started: we’re about to discuss voltage, amperage, and wattage. If you need a refresher on how these things work together, check out our article on watts, kilowatts, and kilowatt-hours.

    A solar charge controller is connected between solar panels and batteries to ensure power from the panels reaches the battery safely and effectively. The battery feeds into an inverter that changes the DC power into AC to run appliances (aka loads).

    How a charge controller works within an off-grid solar system.

    The four main functions of a solar charge controller are:

    • Accept incoming power from solar panels
    • Control the amount of power sent to the battery
    • Monitor the voltage of the battery to prevent overcharging
    • Allow power to flow only from the solar panels to the batteries

    As a battery charges, its voltage increases, up to a limit. The battery can be damaged if an additional charge is applied past this limit. Therefore, the ability of a battery to provide or accept power can be measured by its voltage. For example, a typical 12-volt AGM lead-acid battery will show a voltage of 11.8 volts at 10% charged to 12.9 volts at 100% charge.

    The main function of a solar charge controller is to ensure the amount of power that is sent to the battery is enough to charge it, but not so much that it increases the battery voltage above a safe level. It does this by reading the voltage of the battery and calculating how much additional energy is required to fully charge the battery.

    Another important function of the charge controller is to prevent current from traveling back into the solar panels. When the sun isn’t shining, the solar panels aren’t producing any voltage. Because electricity flows from high voltage to low voltage, the power in the battery would flow into the solar panels if there was nothing in place to stop it. This could potentially cause damage. The charge controller has a diode that allows power to flow in one direction, preventing electricity from feeding back into the panels.

    choosing, right, solar, charge, controller

    How solar power gets from panels to batteries

    As we mentioned above, power flows from high voltage to low. So, to add energy to the battery, the output voltage of a solar panel must always be a little higher than the voltage of the battery it’s charging. Thankfully, solar panels are designed to put out more voltage than a battery needs at any given time.

    Here’s an example: Say you have a single 100-watt solar panel and a 12-volt battery. Remember from above that a 12-volt battery is actually able to charge up to about 12.9 volts. 12 volts is what is called its “nominal voltage,” while the actual voltage of the battery depends on how charged it is. It might sink to 11.8 volts at low charge, and 12.9 volts when full.

    The 100-watt solar panel can put out a maximum of 18 volts, which is a little too high for the battery to accept safely. Leaving it connected to the battery too long could result in a dangerous situation, eventually causing pressure to build up inside the battery and vent out the side as chemical steam.

    You need a charge controller in between the solar panel and the battery to limit the voltage available to the battery. But it’s not just about the voltage. it also has to withstand a certain amount of current (amperage) flowing through it. That’s where the amperage rating of the charge controller comes in.

    Charge controller amperage rating

    The number of amps of current a charge controller can handle is called its “rating.” Exceeding the amperage rating can cause damage to the wiring within the charge controller. Let’s consider a charge controller rated to handle 30 amps of current. The single 100- watt solar panel described above puts out 5.5 amps of current at 18 volts. That amperage is much lower than the charge controller’s maximum of 30 amps, so the charge controller can easily handle the output of the singular solar panel.

    In fact, it could handle the output of multiple solar panels wired in parallel (which increases current output). But there’s an important rule about charge controller ratings to consider: always make sure your charge controller is rated to handle 25% more amps than your solar panels are supposed to put out. That’s because solar panels can exceed their rated current output under especially bright sun, and you don’t want to fry your charge controller on the rare occasion when that happens.

    Keeping that rule in mind, the 30-amp charge controller in our example could accept a nominal output of up to 24 amps. You could wire as many as four of those 5.5-amp solar panels in parallel to create a solar array capable of putting out 22 amps, staying under the charge controller’s rating plus the 25% cushion. If you think you might expand the size of your solar array in the future, get a charge controller rated for 50% more amps than your immediate needs.

    Matching voltages

    Another consideration when choosing a charge controller is the voltage of the battery bank you want to charge. Wiring batteries in series increases the voltage they can deliver and accept. For example, two 12-volt batteries wired in series will operate at 24 nominal volts. There are charge controllers on the market that can pair with battery banks of 12, 24, 36, and 48 volts. You need to make sure the charge controller you purchase can pair with the voltage of the battery bank.

    Battery charging stages

    There are three stages of charging a battery: bulk, absorption, and float. They correspond to how full the battery is.

    • Bulk: When a battery charge is low, the charge controller can safely push a lot of energy to it, and the battery fills up with charge very quickly.
    • Absorption: as the battery nears its full charge (around 90%), the charge controller reduces its current output, and the battery charges more slowly until it’s full.
    • Float: when the battery is full, the charge controller lowers its output voltage just a bit to maintain the full charge.

    Think of it like pouring water from a pitcher into a cup with a very slow leak: when the cup is empty, you start pouring and quickly increase the amount of water being poured until the cup is nearly full. Then you reduce the flow until the cup is full. In order to keep the cup full despite the leak, you pour just a trickle to keep it topped off.

    The bulk/absorption/float process was developed for lead-acid deep cycle batteries. Some newer lithium batteries allow for higher current up until they’re quite full, meaning a charge controller paired with a lithium battery can be set to shorten or eliminate the absorption stage.

    Types of charge controller

    There are two main ways to control the flow of power to a battery, and they correspond to the two types of charge controller: pulse-width modulation (PWM) and maximum power point tracking (MPPT).

    Pulse-width modulation (PWM)

    Pulse-width modulation is the simplest and cheapest automatic way to control the flow of power between solar panels and a battery. There are PWM charge controllers on the market for between about 15 to 40.

    A PWM charge controller ensures the battery never charges to more than its maximum voltage by switching the power flow on and off hundreds of times per second (i.e. sending “pulses” of power) to reduce the average voltage coming from the solar panels. The width of the pulses reduces the average output voltage.

    Here’s an image to illustrate how the pulses work:

    For example, if the charge controller accepts 18 volts from the solar panel, it might adjust the pulses so they’re on 82% of the time, and off 18% of the time. This would reduce the average voltage by 18%, down to about 14.8 volts, which can be used to charge a half-full AGM battery. As the battery gets close to a full charge, a PWM charge controller shortens the pulses even further, down to around 77% of the time, or 13.8 volts, to prevent the battery from overcharging.

    Unfortunately, the excess energy produced by solar panels is wasted to reduce the output voltage. In our example, the charge controller would average around 80% efficiency. This means it’s very important to make sure the output voltage of the solar panels is not too much higher than the voltage of your battery bank with a PWM charge controller to minimize wasted energy. If your solar array outputs a much higher voltage, the PWM charge controller will cut that voltage down to what the battery can accept, and waste the rest.

    Something like 80% efficiency is fine for small off-grid applications like a few solar panels hooked up to a couple of batteries, especially at the low cost of a PWM charge controller. For larger systems with much higher output, it is generally preferable to use the other kind of charge controller technology known as maximum power point tracking, or MPPT.

    Maximum power point tracking (MPPT)

    An MPPT solar charge controller operates by converting the incoming power from solar panels to match the theoretical highest-efficiency output at the right input voltage for the battery. The charge controller does this by calculating the point at which the maximum current can flow at a voltage the battery can accept, then converting the solar panel output to that mixture of voltage and current.

    The major advantages of MPPT charge controllers are greater efficiency and compatibility with higher voltage solar arrays. This means that you can charge a 12V battery bank with a larger solar array wired in series, as long as you stay within the limits of the controller’s amperage rating. You can calculate this limit by taking the total wattage of the solar array and dividing it by the voltage of the battery bank to get the maximum possible output in amps.

    Let’s use the same example numbers as before. The solar panel is putting out 100 watts, or about 5.5 amps into 18 volts. The MPPT charge controller converts the output to 14.8 volts but loses about 5% of the power in the conversion process. So the MPPT controller’s output current is about 6.4 amps, times the 14.8 volts, or 95 watts.

    Theoretically, in an hour of full sun, the MPPT charge controller will have delivered 95 amp-hours of energy to the batteries, compared to the PWM charge controller’s energy output of about 80 amp-hours. In practice, it isn’t quite that simple, as solar pro Will Prowse discovered in this video:

    Common features and settings on a charge controller

    The basic features of the simplest PWM charge controller include the ability to set the type of battery and battery bank voltage, and lights indicating the phase of charging (bulk, absorption, and float). advanced PWM and MPPT models come with a small LCD display for programming and data display, a heat sensor port to monitor battery temperature, and a communications port to connect the charge controller to an external display or computer. The most advanced charge controllers offer Bluetooth connectivity and an app for customizing settings.

    Recommended prodcuts

    There are tons of fine charge controllers available on the market. Search any solar supply or online marketplace like Amazon and you’re bound to turn up dozens of results.

    The cheapest PWM charge controllers can be had for around 15, and are often rebranded versions of the same design. These lack many features but are relatively reliable for how inexpensive they are. expensive PWM charge controllers built with better quality materials can be had for under 50, while full-featured MPPT charge controllers are priced anywhere from 100 to 200.

    Below are a few of our recommended charge controllers at different price points for a medium-sized off-grid setup.

    Renogy Wanderer 30A 12V PWM

    The Renogy Wanderer 30A PWM charge controller is a solid choice for a smaller off-grid setup. It can handle up to 30A of current at 12V, so it’s not meant for a large system.

    It doesn’t have a screen, but it does pair with the three main kinds of lead-acid batteries as well as lithium ones. It has a connector port for an optional temperature sensor and includes an RS232 port that can be used to program the charge controller or even to add Renogy’s BT-1 Bluetooth module for connecting to the Renogy app on your smartphone.

    The Wanderer can be had for about 40 from Amazon or Renogy direct.

    EPEVER Tracer BN 30A 12V/24V MPPT

    The EPEVER Tracer BN MPPT 30A charge controller is not the cheapest MPPT charge controller on the market, but it’s a very good one. With a die-cast aluminum body, sturdy connectors, and a DC output to power loads like DC appliances or LED lights, the Tracer BN is a robust piece of equipment perfect for handling solar charging of lead-acid batteries in 12- and 24-volt banks. It can accept an incoming power output of up to 2,340 watts of solar panels (that’s equal to three parallel strings of four 60-cell solar panels wired in series). The Tracer can be programmed to charge lithium batteries, but it doesn’t come with a preset charging profile for them.

    This EPEVER Tracer BN kit at Amazon includes a temperature sensor, mounting hardware, and a separate screen for programming and monitoring the health and state of charge of your battery system. Price at the time of publishing was 179.99.

    Victron Energy SmartSolar 30A 100V MPPT

    Victron is one of the most trusted solar brands in the world, and its technology is now becoming more widely available in the United States. This 30A, 100V charge controller is known as one of the best on market. Just like the EPEVER controller, it works with 12- or 24-volt battery banks but allows for slightly lower voltage solar input. To stay under this charger’s rating, you could run as many as three parallel strings of three 60-cell solar panels in series to achieve an output of 90 volts at around 20 amps (1,800 watts of solar output).

    It’s made with quality components, calculates maximum power point quickly and with high efficiency, and is very easy to use. The SmartSolar line of charge controllers all come with Bluetooth connectivity on board and can connect to the VictronConnect app on Android, iOS, macOS, and Windows for easy programming. Perhaps most importantly, you get a 5-year limited warranty that protects you against defects in materials and workmanship.

    The SmartSolar 30A is the most expensive product on our list at around 225 on Amazon, but reading the reviews from its users, you can see why the expense might be worth it.

    Solar charge controllers: are they right for you?

    All the information above should give you a good basis of knowledge about how solar charge controllers work and how to pair them with solar panels and batteries, but there’s no substitute for practical, hands-on experience! If you have a few bucks to spend, you can set up a pretty simple off-grid solar “generator” using a single solar panel, a charge controller, a battery, and a cheap inverter. Choosing a charge controller that’s oversized for a small application gives you a chance to increase the size of the solar array and battery bank as you gain experience or find new ways to use the stored solar energy.

    Now go out there and start making solar and batteries work for you!

    Solar Charge Controller Settings

    A solar charge controller has various settings that need to be altered for it to function properly, such as voltage ampere settings. Today you will get to know about solar charge controller settings along with solar charge controller voltage settings.

    Solar Charge Controller

    The amount of power generated from the solar panel travels to the inverter batteries. This power needs to be maintained and regulated. A solar charge controller is used for this purpose. It sends short energy pulses to the battery. The average output produced by an MPPT solar charge controller can be 42 volts. You will require additional batteries to produce higher voltages. Here is the catch: to prevent your batteries from damage, you need to choose the right solar charge controller.

    Solar Charge Controller Settings

    Just installing a charge controller won’t solve all your problems. There are different settings that need to be checked and manually adjusted. Different types of batteries like Lithium Iron Phosphate (LIPO), lithium, iron phosphate, lead-acid, and Absorbent Glass Mat (AGM) batteries have different settings. However, there are only two types of charge controllers.

    MPPT controller or maximum power-point tracking controller

    PWM controller or pulse width modulation controller

    Before starting to set up the solar charge controller, you need to understand its functioning of it. Here are the points that you need to keep a note of while installing and setting up the solar charge controller.

    Once the battery is fully charged, the battery will not hold more solar energy in comparison to the chemical content.

    • If the battery is charged high, it can result in the development of heat and gas inside the battery.
    • Electrolytes inside the battery began to expand. This further led to the development of bubbles.
    • This chemical process leads to the generation of hydrogen gas, which is explosive.
    • An overcharged battery will decrease the capacity and increase the aging process of the battery.

    The Parameters:

    Battery Floating Charging Voltage

    The voltage at which a battery is maintained once it is fully charged is known as the battery floating charging voltage. This voltage maintains the capacity of the battery by self-discharging it. The typical voltage for a 12V system is 13.7V and for a 24 V system, it is 27.4V. 58.4V is the voltage for a 48V system.

    Battery Over-Discharging Protection Voltage

    It is also known as under voltage cutoff voltage and its value should also be in accordance with the battery type. In solar charge controller settings, the voltage value range for a 12V system is 10.8V to 11.4V. For a 24V system, it is 21.6V to 22.8V, and 43.2V to 45.6V for a 48 V system. So, the typical values are 11.1 V, 22.2 V, and 44.4 V.

    Battery Overcharging Protection Voltage

    This voltage value should be set as per the battery type. This voltage is also termed a fully charged cutoff voltage or over-voltage cutoff voltage. This voltage value for a 12-volt system ranges between 14.1 V and 14.5 V. For a 24-volt system, it is 28.2V to 29V and for a 48V system, it is 56.4V to 58V. So overall, the typical value for the voltage is 14.4V, 28.8V, and 57.6V.

    Charge Controller Capacity

    It is the maximum number of amperes that your solar charge controller can handle. It is the parameter on the basis of which a solar charge controller is rated. It can be 10A, 20A, 30A, 40A, 50A, 60A, 80A, or 100A.

    Maximum Charging Current

    It is the maximum output current of the solar panels or solar arrays. It is the output that you receive from the batteries.

    System Voltage

    It is also known as the Rated Operational Voltage of your solar power system which refers to the battery bank voltage (direct current operational voltage). Usually, the value is 12V, 24V, or 48V. However, a medium-scale or a large-scale charge controller system has voltage values of 110V and 220V.

    Solar Charge Controller Voltage Settings

    These are the most critical settings that need to be done carefully for the better functioning of the solar charge controller. A solar charge controller is capable of handling a variety of battery voltages ranging from 12 volts to 72 volts. As per the basic solar charge controller settings, it is capable of accommodating a maximum input voltage of 12 volts or 24 volts.

    You need to set the voltage and current parameters before you start using the charge controller. This can be done by adjusting the voltage settings. Here is the list mentioning the most critical voltage settings for the solar charge controller.

    • Absorption Duration: (Adaptive/Fixed)
    • Absorption Voltage: 14.60 volts
    • Automatic Equalization: (Disabled / Equalize every X Days) Disabled
    • Equalization Current Percentage: 25%
    • Equalization Duration: 4 hours
    • Equalization stop mode: (Fixed Time / Automatic on Voltage) Fixed time
    • Equalization Voltage: 14.40 volts
    • Float Voltage: 13.50 volts
    • Low-Temperature Cutoff (optional): Disabled
    • Maximum Absorption Time: 6 hours to 3 minutes (max) per 100Ah battery capacity
    • Maximum Absorption Rate: 30 minutes per 100Ah battery capacity
    • Manual Equalization: Select start now
    • Maximum Equalization Duration: 3-4 hours
    • Re-Bulk Voltage offset: 0.1 volts
    • Tail Current: 2.0A
    • Temperature Compensation (mV/°C): 27.7 volts / 40° Celsius-25° Celsius

    Note: Settings can be changed manually on the controller or from the PC Software. Follow the instructions of the manufacturer for the best results.

    Steps in Solar Charge Controller Settings

    While you set up your new solar charge controller, you should begin with properly wiring the controller to the battery bank and solar panels properly. Once the wiring is properly done and the controller detects the power, its screen will light up. Other steps are as follows:

    Enter the settings menu by holding the menu button for a few seconds.

    Charge current PV to Battery will be displayed

    Battery Type Selection can be done by pressing the menu button for a long time.

    The battery voltage will be auto-detected by the controller.

    According to the user manual, set the setting for absorption charge voltage, low voltage cutoff value, float charge voltage, and low voltage recovery value.

    If the system has an option for setting up the discharge value for DC, then set it as per the user manual.

    Once the setting is done, the charge controller will instantly start the charging process.

    PWM Solar Charge Controller User Manual

    The user manual of a PWM or a pulse width modulation solar charge controller contains information regarding the following:

    LCD Display or Key

    A solar charge controller has a digital display that displays a number of things on the panel through abbreviations or signs and symbols. Here is the list of those things and what they mean.

    • A panel with a small sun shining indicates the solar panel charge.
    • An arrow near the panel when it is bold black means the system is on Aqualation or buck when the arrow is flicking it means it is on float mode.
    • A square filled with horizontal bars indicates battery.
    • Near the battery sign, there is an arrow indicating the output.
    • A bulb sign indicates the load
    • V% indicates the voltage
    • AH is for ampere hours
    • A square-shaped box indicates a menu. It is used for switching between different displays. You can enter or exit the setting by pressing it for a long time.
    • An up arrow is used to increase the value
    • A down arrow showing a decrease in the value

    LCD Display or Setting

    To browse different interfaces in the solar charge controller settings, press the menu button. The LCD or key display discussed in point 1 is the main display. Next displays in order when you press the menu are:

    • FloatVoltage – The screen shows LIT, voltage, and the battery
    • Discharge Reconnect – Shows LIT, voltage, battery, output (arrow), and load (bulb)
    • Under voltage Protection – Displays LIT, voltage, empty battery symbol, and load (bulb)
    • Work Mode – It displays hours (H), output (arrow), and load (bulb). OH, means dawn to dusk, 24H means load output is for 24 hours, and 1-23H means the load is on after sunset and closed after sunrise hours.
    • Battery Type – LIT and the battery box with horizontal bars, determine the amount of battery charged and the type of battery. LIT is for lithium. After this, you are again on the main display.

    Important: To switch On or Off the load manually on the main display, press the down key.

    Product Features

    • 3-stage PWM charge management
    • A built-in industrial microcontroller with adjustable parameters
    • A pulse width modulation solar charge controller has the following features:
    • Battery Switching functions between lithium and lead battery. The lithium battery is the default setting and switches it to the battery type interface by holding it for 3 seconds.
    • Dual metal–oxide–semiconductor field-effect transistor (MOSFET) Reverse current protection with low heating dissipation
    • In-built protection for short-circuit open circuits, overload, and reverse

    Safety Instructions

    Every electrical appliance comes with a list of safety instructions that are prepared according to the appliance. A PWM controller has the following safety instructions mentioned in its user manual.

    • Do not connect another charging source with the charge controller. The controller is suitable only for regulating solar modules.
    • For the controller to recognize the battery type, ensure the battery has enough voltage before you begin the installation process.
    • Install the controller on a well-ventilated and flat surface. While running, the controller will be heated.
    • This controller is suitable for lithium batteries. All kinds of lead batteries (open, AGM, and gel) are also compatible with it.
    • To minimize loss, keep the battery cable as short as possible.

    System Connection

    In solar charge controller settings, it contains instructions related to the connection. It tells you which port you need to connect to which wire.

    • Connect the battery to the charge regulator (plus and minus)
    • Connect the consumer to the charge regulator (plus and minus)
    • Connect the photovoltaic module to the charge regulator (plus and minus)

    Technical Parameter

    This section contains all the information regarding the voltage, amperes, input, output, size, weight, etc. of the PWM solar charge controller.

    • Batt voltage – 12 volts / 24 volts auto adapt.
    • Charge current – 10A (KYZ 10), 20A (KYZ 20), 30A (KYZ 30)
    • Discharge current – 10A (KYZ 10), 10A (KYZ 20), 10A (KYZ 30)
    • Max solar input – less than 41 volts
    • Model – (KYZ 10) (KYZ 20) (KYZ 30)
    • Operating temperature –.35 ~60° Celsius
    • Size or weight – 13370355 millimeters or 140 grams
    • Standby current – greater than 10 mA
    • USB output – 5 volts / 2 A Max

    The technical parameters of lithium and lead batteries under certain parameters are mentioned in the table below.

    Type of Battery Equalization Float Undervoltage Protection Discharge Reconnect
    Lithium (LIT) battery 12.8 volts 12.0 volts (default, adjustable range 11.5-12.8 volts) 10.7 volts (defaults, adjustable range 9.0-11.0volts) 11.6 volts(defaults, adjustable range 11.0-11.7volts)
    Lead acid battery (bAt) 14.4 volts 13.7 Volts (defaults, adjustable range13-15V) 10.7V (defaults, adjustable range9.0-11.0 Volts) 11.6 Volts (defaults, adjustable range11.0-11.7V)

    Trouble Shooting

    Every electronic appliance faces some problem that can be easily resolved with troubleshooting. The basic problem and its solution are mentioned under the troubleshooting column in the PWMM user manual. Here I have mentioned the problem – probable cause – solution.

    • Charge icon not on when sunny – Solar panel is open or reversed – Reconnect
    • Load icon off – Battery low – Recharge
    • Load icon off – Mode setting wrong – Set again
    • Load icon slow flashing – Overload – Reduce load watt
    • Load icon slow flashing – Short circuit protection – Auto-reconnect
    • Power off – Battery too low reverse – Check battery or connection

    Solar Charge Controller 24V Settings

    After the solar charge controller settings for a 12V system, the 24V system is the most common charge controller used in residential solar power systems. The basic settings for this are mentioned in the user manual of your charge controller. However, here are a few basic settings that are for a 24V system.

    • Battery Floating Charging Voltage is 27.4V
    • Battery Over-discharging Protection Voltage is 21.6V to 22.8V
    • Battery Overcharging Protection Voltage is 28.2V to 29V
    • Solar charge controller settings for AGM battery

    The solar charge controller setting for an AGM or Absorbent Glass Mat battery is also for 12 volts, 24 volts, or 48 volts. The maximum charge current should be at 50A maximum per 100Ah battery capacity. The absorption voltage should be 14.60 volts and the float voltage at 13.50 volts. Equalization voltage at 14.40 volts and bulk voltage offset at 0.10 volts. Absorption duration should be adaptive, and duration should be between 6 hours to 30 minutes per 100Ah battery capacity. The current percentage for equalization is at 25% and its duration at 4 hours max.

    Solar Charge Controller Settings for Lithium Batteries

    Before you begin setting up your lithium batteries, remember that lithium batteries do not require temperature compensation. Also, if you are replacing lead batteries with lithium batteries and the settings are set at Equalized this needs to be changed. To change this, select, EQE (Master equalizer enable/disable) on the charge controller display. This can also be done by selecting OFF the dip switch in other controllers. Some common settings for a multi-stage charge profile need to be set to the following settings:

    • Charge voltage – 14.4 volts (3.6 VPC)
    • Absorption time – 30 minutes to balance lithium cells
    • Float voltage – 13.6 volts
    • Resting voltage (default) – 3.4 VPC

    Solar Charge Controller Settings for Lead Acid Battery

    The lead acid battery is a classic configuration in a solar power system. Once you convert the battery type from lithium/AGM to lead acid battery, the original set parameters for a lead acid battery will be used. These configurations are already installed in the charge controller system. And sometimes, it is just plugging and using the system.

    Well, today you learned about the alteration in solar charge controller settings in accordance with the type of batteries your inverter has. Also, solar charge controller voltage settings should be carefully done to get the maximum potential output from the solar charge controller.

    Olivia is committed to green energy and works to help ensure our planet’s long-term habitability. She takes part in environmental conservation by recycling and avoiding single-use plastic.

    Do Garmin Watches Cause Cancer?

    Powering Up: Your Guide to Charging a Solar Watch

    2 Комментарии и мнения владельцев

    Hello, very nice article! Could I have 2 questions: 1.) I have the same type controller. Do you know, why my solar controller is changing battery setup from B03 to B01 by itself? Is it damaged? 2.) Now I miss arrow on display between solar panel and battery. Does it mean, that battery is fully charged? Thank you.

    Dear Jaro, Thankyou for reaching out to us. For Query 1: Solar Charge Controller changing battery setup from B03 to B01. We have found that said settings mean as follows: B03 – Battery Over Voltage – This error occurs when Input voltage to battery terminals exceeds 17.5-V B01 – Battery Disconnected – This fault code appears when the Portable solar kit cannot detect a battery bank. The issue you are facing can be due to the following reasons: 1- Automatic Configuration – Some controllers adjust their settings based on the battery type and conditions they detect. Check your controller’s manual to see if it has this feature and disable it, according to instrcutions listed in the manual. 2- Firmware or Software Issue: Glitches in the controller’s firmware or software can cause unexpected behavior. Check for firmware updates or try resetting the controller to its factory settings. If this doesnt work, contact the manufacturer to get the controller checked for damage and for possible repair. For Query 2: Arrow on Display between Solar Panel and Battery It is difficult to determine the exact meaning without knowing your controller’s model. 1- In some cases, the arrow indicates charging. 2- It could also mean the battery is fully charged. 3- Or, there might be an issue the controller requires a reset. Follow steps listed in the manual to do the same. And if the issue is still unresolved, there could be some issues with wiring between the 3 components. Last option is to get the entire system checked by an authorized technician and contact the manufacturer for assistance.

    Leave A Reply Cancel Reply

    We are dedicated to providing informative and insightful articles on energy, with a FOCUS on renewable, green energy, solar, sustainable, and environment-related topics. Our team of experienced writers and researchers are passionate about exploring the latest advancements in clean energy and providing our readers with valuable information to help them make informed decisions about their energy consumption.

    Corporate Park, D-21, Sector 21, Dwarka, Delhi 110077

    Recent Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *