Skip to content
5 Best Cheap PWM Solar Charge Controllers. Sun solar charge controller

5 Best Cheap PWM Solar Charge Controllers. Sun solar charge controller

    What is a solar charge controller and why are they important?

    As the name suggests, a solar charge controller is a component of a solar panel system that controls the charging of a battery bank. Solar charge controllers ensure the batteries are charged at the proper rate and to the proper level. Without a charge controller, batteries can be damaged by incoming power, and could also leak power back to the solar panels when the sun isn’t shining.

    Solar charge controllers have a simple job, but it’s important to learn about the two main types, how they work, and how to pair them with solar panels and batteries. Armed with that knowledge, you’ll be one step closer to building an off-grid solar system!

    Find out how much you can save by installing solar

    Key takeaways

    • Solar charge controllers allow batteries to safely charge and discharge using the output of solar panels.
    • A charge controller is needed any time a battery will be connected to the direct current (DC) output of solar panels; most often in small off-grid systems.
    • The two kinds of charge controllers are pulse-width modulation (PWM) and maximum power point tracking (MPPT).
    • PWM charge controllers are less expensive, but less efficient, and are best suited for small off-grid systems with a few solar panels and batteries.
    • MPPT charge controllers are more expensive and more efficient, and are good for larger off-grid systems that can power a small home or cabin.
    • The top off-grid charge controllers are made by brands like Victron, EPEVER, and Renogy, but non-brand-name charge controllers can be just fine if you know what to look for.

    Who needs a solar charge controller?

    A charge controller is necessary any time a battery bank will be connected to the direct current (DC) output of solar panels. In most cases, this means a small off-grid setup like solar panels on an RV or cabin. If you’re looking for information on how to use solar and batteries off the grid, you’re in the right place!

    There are also charge controllers aimed at providing battery backup for an existing grid-tied solar system that is on the roof of a home or business. This application requires a high-voltage charge controller and usually involves rewiring the system to direct a portion of the solar output through the charge controller.

    How does a solar charge controller work?

    Fair warning before we get started: we’re about to discuss voltage, amperage, and wattage. If you need a refresher on how these things work together, check out our article on watts, kilowatts, and kilowatt-hours.

    A solar charge controller is connected between solar panels and batteries to ensure power from the panels reaches the battery safely and effectively. The battery feeds into an inverter that changes the DC power into AC to run appliances (aka loads).

    How a charge controller works within an off-grid solar system.

    The four main functions of a solar charge controller are:

    • Accept incoming power from solar panels
    • Control the amount of power sent to the battery
    • Monitor the voltage of the battery to prevent overcharging
    • Allow power to flow only from the solar panels to the batteries

    As a battery charges, its voltage increases, up to a limit. The battery can be damaged if an additional charge is applied past this limit. Therefore, the ability of a battery to provide or accept power can be measured by its voltage. For example, a typical 12-volt AGM lead-acid battery will show a voltage of 11.8 volts at 10% charged to 12.9 volts at 100% charge.

    The main function of a solar charge controller is to ensure the amount of power that is sent to the battery is enough to charge it, but not so much that it increases the battery voltage above a safe level. It does this by reading the voltage of the battery and calculating how much additional energy is required to fully charge the battery.

    Another important function of the charge controller is to prevent current from traveling back into the solar panels. When the sun isn’t shining, the solar panels aren’t producing any voltage. Because electricity flows from high voltage to low voltage, the power in the battery would flow into the solar panels if there was nothing in place to stop it. This could potentially cause damage. The charge controller has a diode that allows power to flow in one direction, preventing electricity from feeding back into the panels.

    best, cheap, solar, charge, controllers

    How solar power gets from panels to batteries

    As we mentioned above, power flows from high voltage to low. So, to add energy to the battery, the output voltage of a solar panel must always be a little higher than the voltage of the battery it’s charging. Thankfully, solar panels are designed to put out more voltage than a battery needs at any given time.

    Here’s an example: Say you have a single 100-watt solar panel and a 12-volt battery. Remember from above that a 12-volt battery is actually able to charge up to about 12.9 volts. 12 volts is what is called its “nominal voltage,” while the actual voltage of the battery depends on how charged it is. It might sink to 11.8 volts at low charge, and 12.9 volts when full.

    The 100-watt solar panel can put out a maximum of 18 volts, which is a little too high for the battery to accept safely. Leaving it connected to the battery too long could result in a dangerous situation, eventually causing pressure to build up inside the battery and vent out the side as chemical steam.

    You need a charge controller in between the solar panel and the battery to limit the voltage available to the battery. But it’s not just about the voltage. it also has to withstand a certain amount of current (amperage) flowing through it. That’s where the amperage rating of the charge controller comes in.

    Charge controller amperage rating

    The number of amps of current a charge controller can handle is called its “rating.” Exceeding the amperage rating can cause damage to the wiring within the charge controller. Let’s consider a charge controller rated to handle 30 amps of current. The single 100- watt solar panel described above puts out 5.5 amps of current at 18 volts. That amperage is much lower than the charge controller’s maximum of 30 amps, so the charge controller can easily handle the output of the singular solar panel.

    In fact, it could handle the output of multiple solar panels wired in parallel (which increases current output). But there’s an important rule about charge controller ratings to consider: always make sure your charge controller is rated to handle 25% more amps than your solar panels are supposed to put out. That’s because solar panels can exceed their rated current output under especially bright sun, and you don’t want to fry your charge controller on the rare occasion when that happens.

    Keeping that rule in mind, the 30-amp charge controller in our example could accept a nominal output of up to 24 amps. You could wire as many as four of those 5.5-amp solar panels in parallel to create a solar array capable of putting out 22 amps, staying under the charge controller’s rating plus the 25% cushion. If you think you might expand the size of your solar array in the future, get a charge controller rated for 50% more amps than your immediate needs.

    Matching voltages

    Another consideration when choosing a charge controller is the voltage of the battery bank you want to charge. Wiring batteries in series increases the voltage they can deliver and accept. For example, two 12-volt batteries wired in series will operate at 24 nominal volts. There are charge controllers on the market that can pair with battery banks of 12, 24, 36, and 48 volts. You need to make sure the charge controller you purchase can pair with the voltage of the battery bank.

    Battery charging stages

    There are three stages of charging a battery: bulk, absorption, and float. They correspond to how full the battery is.

    • Bulk: When a battery charge is low, the charge controller can safely push a lot of energy to it, and the battery fills up with charge very quickly.
    • Absorption: as the battery nears its full charge (around 90%), the charge controller reduces its current output, and the battery charges more slowly until it’s full.
    • Float: when the battery is full, the charge controller lowers its output voltage just a bit to maintain the full charge.

    Think of it like pouring water from a pitcher into a cup with a very slow leak: when the cup is empty, you start pouring and quickly increase the amount of water being poured until the cup is nearly full. Then you reduce the flow until the cup is full. In order to keep the cup full despite the leak, you pour just a trickle to keep it topped off.

    The bulk/absorption/float process was developed for lead-acid deep cycle batteries. Some newer lithium batteries allow for higher current up until they’re quite full, meaning a charge controller paired with a lithium battery can be set to shorten or eliminate the absorption stage.

    Types of charge controller

    There are two main ways to control the flow of power to a battery, and they correspond to the two types of charge controller: pulse-width modulation (PWM) and maximum power point tracking (MPPT).

    Pulse-width modulation (PWM)

    Pulse-width modulation is the simplest and cheapest automatic way to control the flow of power between solar panels and a battery. There are PWM charge controllers on the market for between about 15 to 40.

    A PWM charge controller ensures the battery never charges to more than its maximum voltage by switching the power flow on and off hundreds of times per second (i.e. sending “pulses” of power) to reduce the average voltage coming from the solar panels. The width of the pulses reduces the average output voltage.

    Here’s an image to illustrate how the pulses work:

    For example, if the charge controller accepts 18 volts from the solar panel, it might adjust the pulses so they’re on 82% of the time, and off 18% of the time. This would reduce the average voltage by 18%, down to about 14.8 volts, which can be used to charge a half-full AGM battery. As the battery gets close to a full charge, a PWM charge controller shortens the pulses even further, down to around 77% of the time, or 13.8 volts, to prevent the battery from overcharging.

    Unfortunately, the excess energy produced by solar panels is wasted to reduce the output voltage. In our example, the charge controller would average around 80% efficiency. This means it’s very important to make sure the output voltage of the solar panels is not too much higher than the voltage of your battery bank with a PWM charge controller to minimize wasted energy. If your solar array outputs a much higher voltage, the PWM charge controller will cut that voltage down to what the battery can accept, and waste the rest.

    Something like 80% efficiency is fine for small off-grid applications like a few solar panels hooked up to a couple of batteries, especially at the low cost of a PWM charge controller. For larger systems with much higher output, it is generally preferable to use the other kind of charge controller technology known as maximum power point tracking, or MPPT.

    Maximum power point tracking (MPPT)

    An MPPT solar charge controller operates by converting the incoming power from solar panels to match the theoretical highest-efficiency output at the right input voltage for the battery. The charge controller does this by calculating the point at which the maximum current can flow at a voltage the battery can accept, then converting the solar panel output to that mixture of voltage and current.

    The major advantages of MPPT charge controllers are greater efficiency and compatibility with higher voltage solar arrays. This means that you can charge a 12V battery bank with a larger solar array wired in series, as long as you stay within the limits of the controller’s amperage rating. You can calculate this limit by taking the total wattage of the solar array and dividing it by the voltage of the battery bank to get the maximum possible output in amps.

    Let’s use the same example numbers as before. The solar panel is putting out 100 watts, or about 5.5 amps into 18 volts. The MPPT charge controller converts the output to 14.8 volts but loses about 5% of the power in the conversion process. So the MPPT controller’s output current is about 6.4 amps, times the 14.8 volts, or 95 watts.

    Theoretically, in an hour of full sun, the MPPT charge controller will have delivered 95 amp-hours of energy to the batteries, compared to the PWM charge controller’s energy output of about 80 amp-hours. In practice, it isn’t quite that simple, as solar pro Will Prowse discovered in this video:

    Common features and settings on a charge controller

    The basic features of the simplest PWM charge controller include the ability to set the type of battery and battery bank voltage, and lights indicating the phase of charging (bulk, absorption, and float). advanced PWM and MPPT models come with a small LCD display for programming and data display, a heat sensor port to monitor battery temperature, and a communications port to connect the charge controller to an external display or computer. The most advanced charge controllers offer Bluetooth connectivity and an app for customizing settings.

    Recommended prodcuts

    There are tons of fine charge controllers available on the market. Search any solar supply or online marketplace like Amazon and you’re bound to turn up dozens of results.

    The cheapest PWM charge controllers can be had for around 15, and are often rebranded versions of the same design. These lack many features but are relatively reliable for how inexpensive they are. expensive PWM charge controllers built with better quality materials can be had for under 50, while full-featured MPPT charge controllers are priced anywhere from 100 to 200.

    Below are a few of our recommended charge controllers at different price points for a medium-sized off-grid setup.

    best, cheap, solar, charge, controllers

    Renogy Wanderer 30A 12V PWM

    The Renogy Wanderer 30A PWM charge controller is a solid choice for a smaller off-grid setup. It can handle up to 30A of current at 12V, so it’s not meant for a large system.

    It doesn’t have a screen, but it does pair with the three main kinds of lead-acid batteries as well as lithium ones. It has a connector port for an optional temperature sensor and includes an RS232 port that can be used to program the charge controller or even to add Renogy’s BT-1 Bluetooth module for connecting to the Renogy app on your smartphone.

    The Wanderer can be had for about 40 from Amazon or Renogy direct.

    EPEVER Tracer BN 30A 12V/24V MPPT

    The EPEVER Tracer BN MPPT 30A charge controller is not the cheapest MPPT charge controller on the market, but it’s a very good one. With a die-cast aluminum body, sturdy connectors, and a DC output to power loads like DC appliances or LED lights, the Tracer BN is a robust piece of equipment perfect for handling solar charging of lead-acid batteries in 12- and 24-volt banks. It can accept an incoming power output of up to 2,340 watts of solar panels (that’s equal to three parallel strings of four 60-cell solar panels wired in series). The Tracer can be programmed to charge lithium batteries, but it doesn’t come with a preset charging profile for them.

    This EPEVER Tracer BN kit at Amazon includes a temperature sensor, mounting hardware, and a separate screen for programming and monitoring the health and state of charge of your battery system. Price at the time of publishing was 179.99.

    Victron Energy SmartSolar 30A 100V MPPT

    Victron is one of the most trusted solar brands in the world, and its technology is now becoming more widely available in the United States. This 30A, 100V charge controller is known as one of the best on market. Just like the EPEVER controller, it works with 12- or 24-volt battery banks but allows for slightly lower voltage solar input. To stay under this charger’s rating, you could run as many as three parallel strings of three 60-cell solar panels in series to achieve an output of 90 volts at around 20 amps (1,800 watts of solar output).

    It’s made with quality components, calculates maximum power point quickly and with high efficiency, and is very easy to use. The SmartSolar line of charge controllers all come with Bluetooth connectivity on board and can connect to the VictronConnect app on Android, iOS, macOS, and Windows for easy programming. Perhaps most importantly, you get a 5-year limited warranty that protects you against defects in materials and workmanship.

    The SmartSolar 30A is the most expensive product on our list at around 225 on Amazon, but reading the reviews from its users, you can see why the expense might be worth it.

    Solar charge controllers: are they right for you?

    All the information above should give you a good basis of knowledge about how solar charge controllers work and how to pair them with solar panels and batteries, but there’s no substitute for practical, hands-on experience! If you have a few bucks to spend, you can set up a pretty simple off-grid solar “generator” using a single solar panel, a charge controller, a battery, and a cheap inverter. Choosing a charge controller that’s oversized for a small application gives you a chance to increase the size of the solar array and battery bank as you gain experience or find new ways to use the stored solar energy.

    Now go out there and start making solar and batteries work for you!

    Best Cheap PWM Solar Charge Controllers

    Just so you know, this page contains affiliate links. If you make a purchase after clicking on one, at no extra cost to you I may earn a small commission.

    Top Pick

    The Wanderer 30A is easy to use, versatile, and dependable. It’s great for solar power systems of 400 watts or less, making is the best PWM controller for most people.

    • Handles up to 400 watts
    • Compatible with flooded, sealed, gel, and lithium batteries
    • Optional remote monitoring with Renogy app

    Budget Pick

    The Wanderer 10A is a good choice for smaller 12 or 24 volt systems. The features and build quality you get for the price make it the best cheap PWM charge controller.

    • LCD display
    • Compatible with 12 and 24 volt flooded, sealed, gel, and lithium batteries
    • Optional remote monitoring with Renogy app
    • Current rating of 10 amps limits its use to lower-wattage systems
    • No temperature sensor port

    Honorable Mention

    The SunSaver comes with the best out-of-the-box battery protections. It’s pricier, but it may pay for itself by increasing the lifespan of your batteries.

    • Excellent build quality
    • Maximizes battery life with good voltage accuracy and a built-in temperature sensor

    I spent weeks testing 5 of the best PWM solar charge controllers available. After wiring them to custom-built solar power systems, assessing their user-friendliness, and researching their safety features and battery compatibility, I think the Renogy Wanderer 30A is the best PWM charge controller for most people.

    The Wanderer 30A is designed for 12 volt batteries and can handle up to 400 watts of solar. That’s a good amount of power for most small-scale solar projects, such as those used in small vehicles and buildings. With that much solar you can power lights and some small devices and appliances — like phones, laptops, and maybe even a small 12 volt fridge.

    The best PWM charge controller

    The Wanderer 30A is my favorite PWM controller because of its blend of build quality, ease of use, and value. It’s ideal for 12 volt batteries and can handle up to 400 watts of solar.

    Nominal battery voltage: 12V Charge current rating: 30A
    Battery compatibility: Sealed, gel, flooded, lithium Operating temperature range: -20°F to 113°F (-35°C to 45°C)
    Max. PV open circuit voltage (Voc) 25V LCD display: No
    Temperature sensor: Yes (requires additional purchase) Bluetooth monitoring: Yes (requires additional purchase)

    The Wanderer 30A is easy to use and has plenty of built-in safety features, such as overcharging protection, to protect your system and maximize your battery’s lifespan.

    It also has a place to add a battery temperature sensor for improved temperature compensation. Many PWM charge controllers don’t have a temperature sensor port, and it’s important if your batteries experience wide temperature swings.

    The LED indicators are easy to understand and useful for monitoring your system at a glance. They’re all you need for set-it-and-forget-it systems. But if you want to see exact specs like charging current and battery voltage, you can purchase the Renogy BT-1 Bluetooth Module to monitor your system from your phone.

    All Renogy PWM charge controllers I tested, including the Wanderer 30A, are compatible with sealed, gel, flooded, and lithium batteries. That’s another great thing about this controller — most other PWMs work with only lead acid batteries.

    The Wanderer 30A is also one of the cheaper 30-amp PWM charge controllers available. Overall, it’s a great value.

    The best cheap PWM charge controller

    The Wanderer 10A is an excellent budget option for smaller solar systems. It’s compatible with 12 and 24 volt batteries and has an LCD display for easy monitoring.

    Nominal battery voltage: 12/24V Charge current rating: 10A
    Battery compatibility: Sealed, gel, flooded, lithium Operating temperature range: -31°F to 113°F (-25°C to 45°C)
    Max. PV open circuit voltage (Voc) 50V LCD display: Yes
    Temperature sensor: No Bluetooth monitoring: Yes (requires additional purchase)

    The Wanderer 10A is a great cheap charge controller for lower-wattage 12 or 24 volt systems. For 12 volt systems, it can handle up to 130 watts of solar. For 24 volt systems, Renogy recommends a maximum of 260 watts.

    That’s enough power to run some lights and charge your phone and laptop. For instance, I paired this controller with a 20 watt solar panel to solar power some LED lights in my dad’s shed. It was the perfect size for the project.

    You could also use it to solar charge 12 and 24 volt batteries. It’ll treat your batteries better than most other cheap charge controllers, which tend to be low-quality.

    There are a couple other features worth mentioning: Its LCD display makes it easy to see if everything is working properly. You can also use its 2 USB ports for charging phones and other USB devices.

    In the sea of cheaply made charge controllers, the Wanderer 10A stands out as a top option.

    A PWM charge controller that’s built to last

    The SunSaver line has excellent build quality and is backed by a 5-year warranty. It has some of the best out-of-the-box battery protections to help maximize your battery’s lifespan. It’s expensive, though, and limited to sealed or flooded lead acid batteries.

    Nominal battery voltage: 12-24V (depending on model) Charge current rating: 6-20A (depending on model)
    Battery compatibility: Sealed, flooded Operating temperature range: -40°F to 140°F (-40°C to 60°C)
    Max. PV open circuit voltage (Voc) 30-60V (depending on model) LCD display: No
    Temperature sensor: Yes (built-in) Bluetooth monitoring: No

    The Morningstar SunSaver is the buy-it-for-life option. It’s expensive, but it’s built to last and comes with a 5-year warranty.

    Cheaper controllers cut costs by using plastic cases and screws that are all too easy to strip. The SunSaver, on the other hand, sports marine-grade terminals and an anodized aluminum case. It feels like you could drop it off a building with little consequence.

    It has a built-in temperature sensor and, according to Morningstar, good voltage accuracy. There are also models available with low voltage disconnect (LVD). This means it has some of the best out-of-the-box battery protections.

    It’s pricey, and only works with sealed or flooded lead acid batteries. If it’s right for your system, though, this controller may pay for itself by maximizing your battery’s lifespan.

    Best PWM Solar Charge Controllers

    • Top Pick:Renogy Wanderer 30A
    • Budget Pick:Renogy Wanderer 10A
    • Honorable Mention:Morningstar SunSaver
    • Renogy Adventurer 30A
    • Allpowers 20A Solar Charge Controller

    Top Pick: Renogy Wanderer 30A

    Nominal battery voltage: 12V Charge current rating: 30A
    Battery compatibility: Sealed, gel, flooded, lithium Operating temperature range: -20°F to 113°F (-35°C to 45°C)
    Max. PV open circuit voltage (Voc) 25V LCD display: No
    Temperature sensor: Yes (requires additional purchase) Bluetooth monitoring: Yes (requires additional purchase)

    PWM charge controllers, with their low cost and limited current ratings, are best suited for small-scale solar projects of roughly 400 watts or less. For these sorts of applications, the Wanderer 30A is likely all you need.

    It has a current rating of — you guessed it — 30 amps, which works out to around 400 watts of solar. That’s enough to power quite a bit, like lights, phones, laptops, and maybe even a small appliance.

    It’s simple to mount and set up. Just connect the battery then the solar panel to their respective terminals. LED indicators let you know if everything is working properly. The manual has step-by-step setup instructions and a legend detailing what the various indicator lights mean.

    For set-it-and-forget-it solar systems, I think the LEDs are all you need. For closer monitoring, you can buy the Renogy BT-1 Bluetooth Module to monitor your system from your phone. It’s convenient but by no means necessary.

    Selecting your battery type is as simple as pressing the buttons a few times. You can choose between 4 types: sealed, flooded, gel, and lithium. Most other PWM controllers only work with lead acid batteries.

    The Wanderer 30A is a good choice if your battery will experience wide temperature ranges — such as in a building or vehicle without air conditioning. Temperature affects a battery’s ideal voltage and charging current set points. But many budget PWM controllers don’t compensate for temperature. So on hot and cold days, they can overcharge or overdischarge your battery and shorten its lifespan.

    However, with the Wanderer 30A, you can get the compatible battery temperature sensor. It gives a more accurate battery temperature reading, allowing the charge controller to provide better temperature compensation. It can help your battery last longer, saving you money in the long run.

    I’d still consider using the Wanderer 30A with 100 watts of solar or less. It gives you the ability to add more solar panels if you want to expand your system later on. You could start with LED lights and add a Wi-Fi router later, for instance. PWMs with lower current ratings are more limited.

    It’s sized well for 12 volt solar systems of 400 watts or less. It’s easy to set up and a good value for the price. For most people, I think the Renogy Wanderer 30A is the best PWM solar charge controller for the job.

    Full review: Renogy Wanderer

    Budget Pick: Renogy Wanderer 10A

    Nominal battery voltage: 12/24V Charge current rating: 10A
    Battery compatibility: Sealed, gel, flooded, lithium Operating temperature range: -31°F to 113°F (-25°C to 45°C)
    Max. PV open circuit voltage (Voc) 50V LCD display: Yes
    Temperature sensor: No Bluetooth monitoring: Yes (requires additional purchase)

    The 10-amp model in the Wanderer lineup is my pick for low-wattage solar systems. It has a current rating of 10 amps and is compatible with 12 and 24 volt batteries. It can handle about 130 watts of solar in 12 volt systems and 260 watts in 24 volt systems.

    That’s enough energy for powering lights and charging small devices and batteries. For example, here’s a solar lighting system I built with mine:

    It has an LCD display that tells you charging current, PV voltage, battery voltage, and other useful system specs. Like it’s big sibling, it’s compatible with the Renogy BT-1 Bluetooth Module for remote monitoring.

    Cheap solar controllers can treat your battery poorly, so I checked the Wanderer 10A’s battery voltage reading against a multimeter. Turns out it’s pretty accurate.

    Many budget controllers are usually off in their battery voltage readings by a tenth of a decimal place or so, which — depending on the direction of the error — can lead to slight chronic overcharging or overdischarging and reduce your battery’s lifespan.

    The Wanderer 10A doesn’t have a temperature sensor port, so it can’t provide accurate temperature compensation. Because of this, I recommend using it with batteries that are placed indoors where they won’t get too hot or too cold. Or, at the very least, use it with a cheap battery whose lifespan you aren’t trying to maximize.

    I’d caution against buying the Wanderer 10A if you plan to add more solar panels later on. Its current rating is limiting, so you might have to replace it with another charge controller when you do.

    There are cheaper charge controllers with higher current ratings, but be warned — they’ve been known to make wrong or misleading claims. The quality of the Wanderer 10A is a step above those.

    That’s not to say it — or any cheap PWM — is perfect. I’ve had issues with mine. Like I said, I used it to solar power some lights for my dad’s shed. Well, he accidentally left the lights on too long and drained the battery. The Wanderer 10A was unable to recharge the battery with such a low voltage, and reported a constant “PV over-voltage” error. Replacing the battery didn’t fix the problem, so I eventually had to replace the controller itself.

    Cheap PWMs are cheap for a reason. They work but lack some of the protections of more expensive PWM and MPPT controllers. They leave less room for user error. If you decide to get one, take care when designing and building your solar setup.

    Honorable Mention: Morningstar SunSaver

    Nominal battery voltage: 12-24V (depending on model) Charge current rating: 6-20A (depending on model)
    Battery compatibility: Sealed, flooded Operating temperature range: -40°F to 140°F (-40°C to 60°C)
    Max. PV open circuit voltage (Voc) 30-60V (depending on model) LCD display: No
    Temperature sensor: Yes (built-in) Bluetooth monitoring: No

    The SunSaver is built to last. It has an aluminum anodized enclosure and marine-grade terminals. It can work in incredibly hot and cold temperatures.

    It feels like a brick. Compared to the plastic cases of the other controllers I tested, the SunSaver seems indestructible. It’s even backed by a 5-year warranty.

    It has a built-in temperature sensor and, according to MorningStar, a voltage accuracy of /- 25mV. Models with low voltage disconnect are also available.

    These features give it some of the best out-of-the-box battery protections among PWM controllers. It may pay for itself by extending your battery’s lifespan.

    It’s compatible with sealed or flooded lead acid batteries, and is available in 12 or 24 volt models. Current ratings range from 6 to 20 amps.

    It’s pricey and has limited battery compatibility. (If you’re using lithium batteries, you’ll have to look elsewhere.) But for systems using lead acid batteries, the SunSaver is worth a look. Morningstar is known for making charge controllers that last.

    Renogy Adventurer 30A

    Nominal battery voltage: 12/24V Charge current rating: 30A
    Battery compatibility: Sealed, gel, flooded, lithium Operating temperature range: -13°F to 131°F (-25°C to 55°C)
    Max. PV open circuit voltage (Voc) 50V LCD display: Yes
    Temperature sensor: Yes (requires additional purchase) Bluetooth monitoring: Yes (requires additional purchase)

    The Adventurer 30A combines the best of both Wanderer models in one.

    Start with the 30 amp current rating and temperature sensor port of the Wanderer 30A. Combine that with the LCD display and 12/24V compatibility of the Wanderer 10A. Make sure it’s still Bluetooth compatible. Add a battery voltage sensor port. And don’t forget the Adventurer’s own party trick — flush mounting.

    This combination of features means the Adventurer 30A is great for 12 volt systems of up to 400 watts and 24 volt systems of up to 800 watts. That’s almost a 1kW system — we’re starting to talk serious power. That’s enough power for some small vehicles and off-grid buildings.

    Flush mounting means the Adventurer is well-suited for vans, campers, RVs, and anywhere else you want an aesthetically cleaner flush mount.

    But if you don’t, it can also be surface mounted to the wall like any other charge controller. It comes with an included surface mount attachment that lets you decide.

    Then there’s the battery voltage sensor (BVS) port. Adding a BVS helps the controller maximize battery life when your charge controller and battery are far apart. On longer wire runs, there can be a voltage discrepancy between the battery and controller terminals.

    The downside is the Adventurer 30A is one of the pricier PWM models out there. The Wanderer 30A performs similarly and costs less. For most 12 volt systems, I’d go with the Wanderer 30A.

    But if you want its blend of features — or a flush mounted controller — the Adventurer 30A is a good option.

    Allpowers 20A Solar Charge Controller

    Nominal battery voltage: 12/24V Charge current rating: 20A
    Battery compatibility: Sealed, gel, flooded Operating temperature range: -31°F to 140°F (-35°C to 60°C)
    Max. PV open circuit voltage (Voc) 50V LCD display: Yes
    Temperature sensor: No Bluetooth monitoring: No

    Nearly all the cheap charge controllers on Amazon look identical to this one: a small blue and black box, similar graphics, similar labels. The misspelled “build-in timer.”

    It’s not a coincidence. You’ve just stumbled upon the most popular design for cheap charge controllers.

    And when I say cheap, I mean it. A quick search on Aliexpress for “solar charge controller” turns up one of these blue-and-black models for just 2 USD. Two dollars!

    As you’d expect, the Allpowers 20A charge controller was the cheapest model I tested. It works fine, but — as you’d also expect — the quality is lacking.

    I nearly stripped the screws when applying a normal amount of torque. The controller got warm to the touch with only 3-4 amps of current running through it. No other controller heated up as much as this one.

    The model I bought has a claimed current rating of 20 amps. I’d be nervous to give it 10.

    It does have an LCD display, though it doesn’t show charging current (I only knew because I’d installed an inline watt meter). This is a nitpick, but the screen is also quite fuzzy. You might think my photos of it are out of FOCUS. That’s just what the screen looked like.

    I checked the battery voltage accuracy against a multimeter, and it was off by about a tenth of a volt. That’s not great, but for the price it’s acceptable.

    The user manual mine came with says the battery charging voltage has an error margin of ± 0.15 volts. That’s not great. Voltage discrepancies can cause the charge controller to chronically overcharge or overdischarge your battery, shortening its lifespan.

    If you want a budget PWM, I’d recommend spending a few bucks more for the Renogy Wanderer 10A if you can afford it.

    But there is a use case for these budget models. I’d reserve them for very low-wattage solar projects with cheap lead acid batteries. They should work fine if that’s what you’re using them for. Just understand that they can have little margin for user error. You’ll have to design and build your system well, otherwise they may not last long.

    How to Choose the Best PWM Solar Charge Controller for Your System

    Nominal Battery Voltage

    Your charge controller’s nominal battery voltage should match the nominal voltage of your battery bank.

    If you’re using a 12 volt battery, you need a solar charge controller compatible with 12 volt batteries. Got a 24 volt battery? Use a charge controller compatible with 24 volt batteries.

    Some PWM charge controllers are compatible with 12 and 24 volt battery voltages, making them more versatile.

    Charge Current Rating

    Choose a charge controller with a current rating that is greater than the expected max charge current from controller to battery. You can damage a charge controller if you exceed this number. You’ll also want to make sure this number is below the battery’s maximum recommended charge current.

    You charge controller’s charge current rating (in amps) is usually included in the product name. For example, the Renogy Wanderer 30A can charge a battery at up to 30 amps, and the Wanderer 10A can do up to 10 amps.

    If you don’t see the current rating in the product name, at the very least it should be listed on the product page and in the instruction manual.

    Once you know how much current (amperage) your charge controller can output, you need to use a solar panel, or build a solar array, that stays below this limit.

    You find out how much current your panel can produce by looking at the specifications label. The label will list a short circuit current (Isc) in amps. Make sure the controller’s current rating is greater than the panel’s short circuit current. Add a small buffer to be safe.

    If you have solar panels connected in parallel, add together all panel’s short circuit currents to get your array’s short circuit current. Add a small buffer, then use this number for your comparison.

    Maximum PV Input Power: Some brands, such as Renogy, also list a maximum PV input in watts for their charge controllers. This is simply another way of helping you to stay below the controller’s current rating.

    Battery Compatibility

    Pick a charge controller that is compatible with your type of battery. All PWM models I tested are compatible with sealed and flooded lead acid batteries. Some models are also compatible with gel batteries.

    The most versatile PWMs are also compatible with lithium batteries.

    Operating Temperature Range

    Choose a charge controller with an operating temperature range suited to the location you plan to put it. Some PWMs have narrow operating temperature ranges that could exclude them from being used in buildings or vehicles without air conditioning.

    Example: Let’s say you live in Florida and want to solar power your workshop. Your workshop doesn’t have AC, so on hot summer days it can get up to 110°F (43°C) inside.

    The maximum operating temperature for the Renogy Wanderer 10A and 30A models is 113°F (45°C). The temperature inside your shed will get close to this limit, so you may want to choose a charge controller with a higher maximum temperature.

    Note: Batteries have their own temperature ranges. Consider these as well when designing your system.

    Maximum PV Open Circuit Voltage (Voc)

    The maximum open circuit voltage (Voc) of your solar panel(s) shouldn’t exceed the maximum PV voltage of your charge controller.

    Use our solar panel maximum voltage calculator to calculate your maximum open circuit voltage. Then, make sure you pick a charge controller whose max PV voltage is greater than this number.

    25-30V: Models in this range can handle one 12V solar panel wired in series and are designed for use with 12V batteries. To add panels, you’ll need to wire them in parallel.

    50-60V: Models in this range can handle one to two 12V solar panels wired in series and are usually designed for use with 12V and 24V batteries.

    60V: It’s rare to see PWMs with a PV voltage limit greater than 60V. Models in this range are usually designed to handle 3 or more 12V solar panels wired in series.

    Maximum Wire Gauge

    Many charge controllers list the maximum wire size compatible with their terminals. The max wire gauge often allows much more current than the controller’s current rating. This means you can over-gauge your wires for added safety if you want.

    Some charge controller reviews pay close attention to the wire terminals as a proxy for quality. I generally found this to be true in my testing.

    Additional Features

    LCD displays: LCD screens make it easy to see important specs at a glance, such as charging current or PV voltage. The alternative is LED indicators that flash at different speeds and glow in different colors to convey system status.

    Temperature compensation: As batteries get hot or cold, the charging current and voltage set points should be adjusted. Not doing so risks damaging the batteries. This feature, called temperature compensation, is important for batteries that experience wide temperature swings, such as those placed outside or in buildings or vehicles without air conditioning.

    There are two ways that charge controllers provide temperature compensation:

    Built-in temperature sensors are convenient, but can only monitor the ambient temperature near the charge controller. If your battery is far away or has heated up from working, its temperature could be quite different.

    Temperature probes can be taped directly to the battery for a more accurate battery temperature reading.

    Some cheap PWM charge controllers claim to have temperature compensation. However, unless they have a built-in temperature sensor or a port for attaching a temperature probe, they have no actual way of measuring temperature. They usually just assume a set temperature of 25°C (77°F), regardless of how hot or cold the battery gets.

    Remote Bluetooth monitoring: Bluetooth monitoring lets you monitor and control your system from an app on your phone.

    Bluetooth monitoring is common on more expensive MPPT charge controllers, but rare on cheaper PWM models. In fact, none of the 5 PWM models I tested have it built-in.

    All the Renogy PWM charge controllers I tested come with an RS232 port. It’s used to connect the Renogy BT-1 Bluetooth Module. You can then sync the BT-1 to your phone via the Renogy DC Home app.

    These sorts of apps let you monitor your system in real time. You can also adjust system parameters, such as which type of battery you’re using.

    PWM vs. MPPT Charge Controllers

    PWM charge controllers are cheaper, but less efficient at converting incoming solar energy to the right current and voltage parameters to safely charge the battery. The rule-of-thumb efficiency for PWM charge controllers is around 75%.

    PWM models are often used for small-scale solar power systems where efficiency isn’t a top priority.

    For instance, I recently installed solar power lights in my dad’s shed. He didn’t need to use them that often, meaning charge controller efficiency wasn’t an important consideration. Accordingly, I chose a PWM controller for the project.

    MPPT charge controllers are much more efficient, around 95% or so. However, they are much more expensive.

    MPPT controllers are best for solar systems where efficiency is important. They also have higher current and PV voltage ratings, making them better suited for larger systems of around 400-1000 watts.

    An example where an MPPT could be ideal is on a van with limited roof space. Because of the limited space, you want to maximize the amount of solar energy you can pull from your panels. You decide to go with an MPPT for its conversion efficiency.

    Battery Charge Controller

    For many people, building their own solar panel system and living off-grid is becoming a reality instead of a dream. Connecting the solar panels directly to a single battery or bank of batteries for charging may work, but is not a good idea. What’s needed is a battery charge controller to safely charge and discharge your deep cycle battery for a longer lifespan.

    A standard 12 volt solar panel which can be used to recharge a battery, could actually be putting out nearly 20 volts at full sun, much more voltage than the battery needs. This difference in voltage between the required 12 volts need for the battery and actual 20 volts being generated by the solar panel translates into a greater current flow into the battery.

    This results in too much unregulated solar generated current overcharging the battery which could cause the electrolyte solution within the batteries to overheat and evaporate off, resulting in a much shortened battery life and ultimately, complete battery failure.

    Then the quality of the charging current will directly affect the life of any connected deep cycle battery, so it is extremely important to protect batteries of a solar charging system from being overcharged, or even undercharged, and we can do just that using a battery charge regulation device called a Battery Charge Controller.

    A battery charge controller, also known as a battery voltage regulator, is an electronic device used in off-grid systems and grid-tie systems with battery backup. The charge controller regulates the constantly changing output voltage and current from a solar panel due the angle of the sun and matches it too the needs of the batteries being charged.

    The charge controller does this by controlling the flow of electrical power from the charging source to the battery at a relatively constant and controlled value.

    Thus maintaining the battery at its highest possible state of charge while protecting it from being overcharged by the source and from becoming over-discharged by the connected load. Since batteries like a steady charge within a relatively narrow range, the fluctuations in output voltage and current must be tightly controlled.

    Solar Battery Charge Controller

    Then the most important functions of battery charge controllers used in an alternative energy system are:

    • Prevents Battery Over-charging: This is too limit the energy supplied to the battery by the charging device when the battery becomes fully charged.
    • Prevents Battery Over-discharging: Automatically disconnect the battery from its electrical loads when the battery reaches a low state of charge.
    • Provides Load Control Functions: Automatically connect and disconnect the electrical load at a specified time, for example operating a lighting load from sunset to sunrise.

    Solar panels produce direct or DC current, meaning the solar electricity generated by the photovoltaic panels flows in only one direction only. So in order to charge a battery, a solar panel must be at a higher voltage than the battery being charged. In other words, the voltage of the panel must be greater than the opposing voltage of the battery under charge, in order to produce a positive current flow into the battery.

    When using alternative energy sources such as solar panels, wind turbines and even hydro generators, you will get fluctuations in output power. A charge controller is normally placed between the charging device and the battery bank and monitors the incoming voltage from these charging devices regulating the amount of DC electricity flowing from the power source to the batteries, a DC motor, or a DC pump.

    The charge controller turns-off the circuit current when the batteries are fully charged and their terminal voltage is above a certain value, usually about 14.2 Volts for a 12 volt battery. This protects the batteries from damage because it doesn’t allow them to become over-charged which would lower the life of expensive batteries. To ensure proper charging of the battery, the regulator maintains knowledge of the state of charge (SoC) of the battery. This state of charge is estimated based on the actual voltage of the battery.

    During periods of below average insolation and/or during periods of excessive electrical load usage, the energy produced by the photovoltaic panel may not be sufficient enough to keep the battery fully recharged.

    When the batteries terminal voltage starts to drop below a certain value, usually about 11.5 Volts, the controller closes the circuit to allow current from the charging device to recharge the battery bank again.

    In most cases a charge controller is an essential requirement in any stand-alone PV system and should be sized according to the voltages and currents expected during normal operation. Understanding your batteries and their charging requirements is also a must for any battery based solar system.

    Any battery charge controller must be compatible with both the voltage of the battery bank and the rated amperage of the charging device system. But it must also be sized to handle expected peak or surge conditions from the generating source or required by the electrical loads that may be connected to the controller.

    There are some very sophisticated charge controllers available today. Advanced charge controllers use pulse-width modulation, or PWM. Pulse width modulation is a process that ensures efficient charging and long battery life. However, the more advanced and expensive controllers use maximum power point tracking, or MPPT.

    Maximum power point tracking maximizes the charging amps into the battery by lowering the output voltage allowing them to easily adapt to different battery and solar panel combinations such as 24v, 36v, 48v, etc. These controllers use DC-DC converters to match the voltage and use digital circuitry to measure actual parameters many times a second to adjust the output current accordingly. Most MPPT solar panel controllers come with digital displays and built-in computer interfaces for better monitoring and control.

    Choosing the Right Solar Charge Controller

    We have seen that the primary function of a Battery Charge Controller is to regulate the power passing from the generating device, be it a solar panel or wind turbine to the batteries. They assist in properly maintaining the solar power system batteries by preventing them from being overcharged or undercharged, thus offering long life to batteries.

    The solar current being regulated by a battery charge controller not only charges batteries but can also be passed to inverters for converting the direct DC current to alternating AC current to supply the utility grid.

    For many people who want to live “off grid”, a charge controller is a valuable piece of equipment as part of a solar panel or wind turbine power system. You will find numerous charge controllers manufactures online, but choosing the right one can sometimes be quite confusing and to add to your worries they are not cheap either, so finding a good quality solar charge regulator really matters.

    It’s best not to go for those low quality cheaper ones, as they may actually harm the battery life and increase your overall expense in the long run. For a little peace of mind then why not Click Here and check out some of the better battery charge controllers available from Amazon and learn more about the different types of solar charge controllers available as part of your solar power system helping you to save money and the environment.

    Find Us On

    • Energy Storage
    • Deep Cycle Batteries
    • Understanding Batteries
    • Connecting Batteries Together
    • The Deep Cycle Battery

    On Sale Now Bestseller No. 1 Photovoltaic Design Installation For Dummies 13.77

    On Sale Now Bestseller No. 3 Photovoltaics: Design and Installation Manual 29.45

    On Sale Now Bestseller No. 4 Photovoltaic Systems 119.99

    Please Speak up!

    We hope this Battery Charge Controller tutorial was useful and informative for you. Are you ready to share your thoughtsand experience with us and many others. Your Комментарии и мнения владельцев are always welcome, just post them in the section below.

    P.S. Don’t forget to like, rate, and share this Alternative Energy Tutorials post. Thank you for using our website.

    Комментарии и мнения владельцев already about “ Battery Charge Controller ”

    Hi. Im considering a combination of wind and solar power generation for my boat kept on mooring. I think a combination would be good as Scotland not blessed with lots of sun and my mooring is a bit sheltered with harbour wall. Can i plug output from 2amp wind turbine into a Renogy mppt regulator (20 amp), would it manage the power to my batteries in same way as with a solar panel?

    MPPT controllers have been used for photovoltaic (solar) power for a long time, but can also be used for wind turbines. In real life the wind speed is not constant, but changes continuously, thus the ideal rotor RPM for maximum torque will also change. What is important to remember is that there is an optimum RPM for each wind speed, and that is where we want to run the wind turbine to achieve MPPT. However, to work properly the controller needs an MPPT power curve that is specific for the wind turbine that you want to hook up to the controller. So check the MPPT’s manual if you can connect it to a wind turbine. If not, then it is not advisable since unlike PV, a wind turbine can output much higher open circuit input voltages (Voc) when it is not loaded up or your batteries are full.

    I have a 730 W, 76 V solar panels system charging 24 V battery set up using a Morning Star MPPT charge controller in an OFF GRID set up. Which is the best suited APC or LUMINOUS UPS/Inverter that is solar compatible that can be used.

    Hello, I have read your site with interest. We have a large dwelling with a business operating from it. Our standing load without all onsite is around 4KW This is a combination of servers and IT equipment, freezers, fridges etc. When all onsite with heating lighting TV’s etc. this can reach 10KW our energy costs are spiralling out of control. We have a large paddock approx 50m from the nearest 240V electrical connection into the site wiring that is in a barn. We are looking at taking a step into solar. Our initial aim is to simply power the office load using purely solar Generated energy whenever it is operating and obviously use the grid for any shortfall. We know the property will consume all of the power generated. We had a couple of thoughts. 1) Simple system. Setup an array that can generate approx 3KW and connect it to a Solar inverter and simply connect that into the property wiring system as an input. Whatever it produces should be consumed first before we need to get energy from the grid. Is this assumption correct assuming we have a local load at or exceeding the solar-generated capacity? 2) As an expansion of 1) above. We would look to build a larger array and connect that to a battery bank (this looks like the black magic area) that has enough capacity to provide a stable supply to an inverter that would then be connected as before into the property wiring systems that would provide a variable load of between 4 and 10KW we have seen peaks of 12KW on our monitor that is clamped onto the incoming 100A 240V Grid connection. How would we size the array and battery system and corresponding Invertor etc. Are higher voltage panels better than lower voltage panels? Are higher string voltages better than lower voltages from a power conversion point of view. e.g. is it more efficient to convert from 48V to 240V rather than 12 or 24V to 240V If I have a string of 24V 1000Ah made up of a series connected 2 x parallel 12V strings of 5 x 12V 200Ah batteries giving me 24V 1000Ah of capacity or in theory 24KWh what size inverter would I need to provide power into the property and would my system use the power I have before going to the grid? I am sure some of these questions are a bit basic but we are very DIY-orientated people and want to build this ourselves. Any help in understanding this would be great. I am sure there is much left out of my note. Like cable sizing etc. Logically I think we know what we think is happening, but, that doesn’t make it so! Like will we consume all we have before taking anything from the grid? I apologise for any typos or grammer. Cheers Tony

    There are a number of good points raised here, and we will attempt to answer them. Firstly, an inverter fed grid-connected, or grid-tied system is basically a bunch of solar panels (or turbines) connected to a single inverter (or a collection of small inverters) feeding power directly to the utility grid. Generally, PV inverters operate as current sources injecting electric current into the utility grid in-phase with the grid voltage. It is commonly assumed that ALL the power generated by the PV panels (array) is consumed at the point of generation but this is not always the case. Power consumed is both active (real) and reactive. PV panels generate active power only. If your average power consumption is, for example, 10kWh per day, and you generate 12kWh for the 4 hours of full sun that day, then some of the inverters output power maybe autoconsumed and some may flow into the utility grid. Equally 100% inverter current may flow into the grid and you may consume 100% from the grid, just slowing down your energy meter in the process. On average PV panels generate maximum power for 4 to 5 hours of full sun per day as they do not consistently generate power 24 hours per day at their nominal output wattage rating. Oversizing an inverter by having more DC input power than the inverters AC output power, may increase power output in lower light conditions, thus extending the 5 hours. As would solar tracking. Connecting a battery bank would allow for more autonomy but at a cost and an increased array size, as now the array has to charge batteries for 5 hours plus feed the grid. Then the size and type of grid-connected system would ultimately depend on how many hours of autonomy you require and how much you are willing to pay upfront. Higher string voltages are better providing everything stays within tolerance at worst case conditions. As P = VI, a higher voltage (V) means a lower current (I) for a given power (P) and therefore smaller diameter cabling so cheaper. PV panel voltage depends on the wattage (100W or 400W) of the panel. Higher PV wattages means physically bigger panels, which means more m 2 of installation area.

    best, cheap, solar, charge, controllers

    the article states the controller should stop charging a 12V battery at approx 14.2V, what about 6 volt batteries – same?

    No of course not. A single 3-cell 6 volt rechargeable battery should have a fully charged terminal voltage of about 6.35 volts. To correctly charge a wet battery, the output voltage of the charging system needs to be slightly higher than the batteries fully charged terminal voltage, to ensure that the charging current flows in the direction from charger to battery. A constant voltage equal to between 2.35 to 2.45 volts per cell is recommended for charging storage batteries. Thus for a 12 volt, 6-cell battery this is between 14.1 and 14.7 volts, so the charge controller should stop charging the battery once this voltage level is reached, or switch to a low current float charge. For a 6 volt, 3-cell battery this voltage level is between 7.05 and 7.35 volts.


    Reviews and information on the best Solar panels, inverters and batteries from SMA, Fronius, SunPower, SolaX, Q Cells, Trina, Jinko, Selectronic, Tesla Powerwall, ABB. Plus hybrid inverters, battery sizing, Lithium-ion and lead-acid batteries, off-grid and on-grid power systems.

    What is a solar charge controller?

    A solar charge controller, also known as a solar regulator, is basically a solar battery charger connected between the solar panels and battery. Its job is to regulate the battery charging process and ensure the battery is charged correctly, or more importantly, not over-charged. DC-coupled solar charge controllers have been around for decades and are used in almost all small-scale off-grid solar power systems.

    Modern solar charge controllers have advanced features to ensure the battery system is charged precisely and efficiently, plus features like DC load output used for lighting. Generally, most smaller 12V-24V charge controllers up to 30A have DC load terminals and are used for caravans, RVs and small buildings. On the other hand, most larger, more advanced 60A MPPT solar charge controllers do not have load output terminals and are specifically designed for large off-grid power systems with solar arrays and powerful off-grid inverter-chargers.

    Solar charge controllers are rated according to the maximum input voltage (V) and maximum charge current (A). As explained in more detail below, these two ratings determine how many solar panels can be connected to the charge controller. Solar panels are generally connected together in series, known as a string of panels. The more panels connected in series, the higher the string voltage.

    • Current Amp (A) rating = Maximum charging current.
    • Voltage (V) rating = Maximum voltage (Voc) of the solar panel or string of panels.

    MPPT Vs PWM solar charge controllers

    There are two main types of solar charge controllers, PWM and MPPT, with the latter being the primary FOCUS of this article due to the increased charging efficiency, improved performance and other advantages explained below.

    PWM solar charge controllers

    Simple PWM, or ‘pulse width modulation’ solar charge controllers, have a direct connection from the solar array to the battery and use a basic ‘Rapid switch’ to modulate or control the battery charging. The switch (transistor) opens until the battery reaches the absorption charge voltage. Then the switch starts to open and close rapidly (hundreds of times per second) to modulate the current and maintain a constant battery voltage. This works ok, but the problem is the solar panel voltage is pulled down to match the battery voltage. This, in turn, pulls the panel voltage away from its optimum operating voltage (Vmp) and reduces the panel power output and operating efficiency.

    PWM solar charge controllers are a great low-cost option for small 12V systems when one or two solar panels are used, such as simple applications like solar lighting, camping and basic things like USB/phone chargers. However, if more than one panel is needed, they will need to be connected in parallel, not in series (unless the panels are very low voltage and the battery is a higher voltage).

    MPPT solar charge controllers

    MPPT stands for Maximum Power Point Tracker; these are far more advanced than PWM charge controllers and enable the solar panel to operate at its maximum power point, or more precisely, the optimum voltage and current for maximum power output. Using this clever technology, MPPT solar charge controllers can be up to 30% more efficient, depending on the battery and operating voltage (Vmp) of the solar panel. The reasons for the increased efficiency and how to correctly size an MPPT charge controller are explained in detail below.

    As a general guide, MPPT charge controllers should be used on all higher power systems using two or more solar panels in series, or whenever the panel operating voltage (Vmp) is 8V or higher than the battery voltage. see full explanation below.

    What is an MPPT or maximum power point tracker?

    A maximum power point tracker, or MPPT, is basically an efficient DC-to-DC converter used to maximise the power output of a solar system. The first MPPT was invented by a small Australian company called AERL way back in 1985, and this technology is now used in virtually all grid-connect solar inverters and all MPPT solar charge controllers.

    The functioning principle of an MPPT solar charge controller is relatively simple. due to the varying amount of sunlight (irradiance) landing on a solar panel throughout the day, the panel voltage and current continuously vary. In order to generate the most power, an MPPT sweeps through the panel voltage to find the sweet spot or the best combination of voltage and current to produce the maximum power. The MPPT continually tracks and adjusts the PV voltage to generate the most power, no matter what time of day or weather conditions. Using this clever technology, the operating efficiency greatly increases, and the energy generated can be up to 30% more compared to a PWM charge controller.

    PWM Vs MPPT Example

    In the example below, a common 60 cell (24V) solar panel with an operating voltage of 32V (Vmp) is connected to a 12V battery bank using both a PWM and an MPPT charge controller. Using the PWM controller, the panel voltage must drop to match the battery voltage and so the power output is reduced dramatically. With an MPPT charge controller, the panel can operate at its maximum power point and in turn can generate much more power.

    Best MPPT solar charge controllers

    See our detailed review of the best mid-level MPPT solar charge controllers used for small scale off-grid systems up to 40A. click on the summary table below. Also see our review of the most powerful, high-performance MPPT solar charge controllers used for professional large-scale off-grid systems here.

    Battery Voltage options

    Unlike battery inverters, most MPPT solar charge controllers can be used with a range of different battery voltages. For example, most smaller 10A to 30A charge controllers can be used to charge either a 12V or 24V battery, while most larger capacity, or higher input voltage charge controllers, are designed to be used on 24V or 48V battery systems. A select few, such as the Victron 150V range, can even be used on all battery voltages from 12V to 48V. There are also several high voltage solar charge controllers, such as those from AERL and IMARK which can be used on 120V battery banks.

    Besides the current (A) rating, the maximum solar array size that can be connected to a solar charge controller is also limited by the battery voltage. As highlighted in the following diagram, using a 24V battery enables much more solar power to be connected to a 20A solar charge controller compared to a 12V battery.

    Based on Ohm’s law and the power equation, higher battery voltages enable more solar panels to be connected. This is due to the simple formula. Power = Voltage x Current (P=VI). For example 20A x 12.5V = 250W, while 20A x 25V = 500W. Therefore, using a 20A controller with a higher 24V volt battery, as opposed to a 12V battery, will allow double the amount of solar to be connected.

    • 20A MPPT with a 12V battery = 260W max Solar recommended
    • 20A MPPT with a 24V battery = 520W max Solar recommended
    • 20A MPPT with a 48V battery = 1040W max Solar recommended

    Note, oversizing the solar array is allowed by some manufacturers to ensure an MPPT solar charge controller operates at the maximum output charge current, provided the maximum input voltage and current are not exceeded! See more in the oversizing solar section below.

    Solar panel Voltage Explained

    All solar panels have two voltage ratings which are determined under standard test conditions (STC) based on a cell temperature of 25°C. The first is the maximum power voltage (Vmp) which is the operating voltage of the panel. The Vmp will drop significantly at high temperatures and will vary slightly depending on the amount of sunlight. In order for the MPPT to function correctly, the panel operating voltage (Vmp) must always be several volts higher than the battery charge voltage under all conditions, including high temperatures. see more information about voltage drop and temperature below.

    The second is the open-circuit voltage (Voc) which is always higher than the Vmp. The Voc is reached when the panel is in an open-circuit condition, such as when a system is switched off, or when a battery is fully charged, and no more power is needed. The Voc also decreases at higher temperatures, but, more importantly, increases at lower temperatures.

    Battery Voltage Vs Panel Voltage

    For an MPPT charge controller to work correctly under all conditions, the solar panel operating voltage (Vmp), or string voltage (if the panels are connected in series) should be at least 5V to 8V higher than the battery charge (absorption) voltage. For example, most 12V batteries have an absorption voltage of 14 to 15V, so the Vmp should be a minimum of 20V to 23V, taking into account the voltage drop in higher temperatures. Note, on average, the real-world panel operating voltage is around 3V lower than the optimum panel voltage (Vmp). The String Voltage Calculator will help you quickly determine the solar string voltage by using the historical temperature data for your location.

    12V Batteries

    In the case of 12V batteries, the panel voltage drop due to high temperature is generally not a problem since even smaller (12V) solar panels have a Vmp in the 20V to 22V range, which is much higher than the typical 12V battery charge (absorption) voltage of 14V. Also, common 60-cell (24V) solar panels are not a problem as they operate in the 30V to 40V range, which is much higher.

    24V Batteries

    In the case of 24V batteries, there is no issue when a string of 2 or more panels is connected in series, but there is a problem when only one solar panel is connected. Most common (24V) 60-cell solar panels have a Vmp of 32V to 36V. While this is higher than the battery charging voltage of around 28V, the problem occurs on a very hot day when the panel temperature increases and the panel Vmp can drop by up to 6V. This large voltage drop can result in the solar voltage dropping below the battery charge voltage, thus preventing it from fully charging. A way to get around this when using only one panel is to use a larger, higher voltage 72-cell or 96-cell panel.

    48V Batteries

    When charging 48V batteries, the system will need a string of at least 2 panels in series but will perform much better with 3 or more panels in series, depending on the maximum voltage of the charge controller. Since most 48V solar charge controllers have a max voltage (Voc) of 150V, this generally allows a string of 3 panels to be connected in series. The higher voltage 250V charge controllers can have strings of 5 or more panels which is much more efficient on larger solar arrays as it reduces the number of strings in parallel and, in turn, lowers the current.

    Note: Multiple panels connected in series can produce dangerous levels of voltage and must be installed by a qualified electrical professional and meet all local standards and regulations.

    Solar panel voltage Vs Temperature

    The power output of a solar panel can vary significantly depending on the temperature and weather conditions. A solar panel’s power rating (W) is measured under Standard Test Conditions (STC) at a cell temperature of 25°C and an irradiance level of 1000W/m2. However, during sunny weather, solar panels slowly heat up, and the internal cell temperature will generally increase by at least 25°C above the ambient air temperature; this results in increased internal resistance and a reduced voltage (Vmp). The amount of voltage drop is calculated using the voltage temperature co-efficient listed on the solar panel datasheet. Use this Solar Voltage Calculator to determine string voltages at various temperatures.

    Both the Vmp and Voc of a solar panel will decrease during hot sunny weather as the cell temperature increases. During very hot days, with little wind to disperse heat, the panel temperature can rise as high as 80°C when mounted on a dark-coloured rooftop. On the other hand, in cold weather, the operating voltage of the solar panel can increase significantly, up to 5V or even higher in freezing temperatures. Voltage rise must be taken into account as it could result in the Voc of the solar array going above the maximum voltage limit of the solar charge controller and damaging the unit.

    Panel Voltage Vs Cell Temperature graph notes:

    • STC = Standard test conditions. 25°C (77°F)
    • NOCT = Nominal operating cell temperature. 45°C (113°F)
    • (^) High cell temp = Typical cell temperature during hot summer weather. 65°C (149°F)
    • (#) Maximum operating temp = Maximum panel operating temperature during extremely high temperatures mounted on a dark rooftop. 85°C (185°F)

    Voltage increase in cold weather

    Example: A Victron 100/50 MPPT solar charge controller has a maximum solar open-circuit voltage (Voc) of 100V and a maximum charging current of 50 Amps. If you use 2 x 300W solar panels with 46 Voc in series, you have a total of 92V. This seems ok, as it is below the 100V maximum. However, the panel voltage will increase beyond the listed Voc at STC in cold conditions below 25°C cell temperature. The voltage increase is calculated using the solar panel’s voltage temperature coefficient, typically 0.3% for every degree below STC (25°C). As a rough guide, for temperatures down to.10°C, you can generally add 5V to the panel Voc which equates to a Voc of 51V. In this case, you would have a combined Voc of 102V. This is now greater than the max 100V Victron 100/50 input voltage limit and could damage the MPPT and void your warranty.

    Solution: There are two ways to get around this issue:

    • Select a different MPPT solar charge controller with a higher input voltage rating, such as the Victron 150/45 with a 150V input voltage limit.
    • Connect the panels in parallel instead of in series. The maximum voltage will now be 46V 5V = 51 Voc. Note this will only work if you use a 12V or 24V battery system; it’s unsuitable for a 48V system as the voltage is too low. Also note, in parallel the solar input current will double, so the solar cable should be rated accordingly.

    Note: Assuming you are using a 12V battery and 2 x 300W panels, the MPPT charger controller output current will be roughly: 600W / 12V = 50A max. So you should use a 50A MPPT solar charge controller.

    best, cheap, solar, charge, controllers

    Guide only. Use the new String Voltage Calculator to determine panel voltages accurately.

    Basic guide

    The charge controller Amp (A) rating should be 10 to 20% of the battery Amp/hour (Ah) rating. For example, a 100Ah 12V lead-acid battery will need a 10A to 20A solar charge controller. A 150W to 200W solar panel will be able to generate the 10A charge current needed for a 100Ah battery to reach the adsorption charge voltage provided it is orientated correctly and not shaded. Note: Always refer to the battery manufacturer’s specifications.

    Advanced Guide to off-grid solar systems

    Before selecting an MPPT solar charge controller and purchasing panels, batteries or inverters, you should understand the basics of sizing an off-grid solar power system. The general steps are as follows:

    • Estimate the loads. how much energy you use per day in Ah or Wh
    • Battery capacity. determine the battery size needed in Ah or Wh
    • Solar size. determine how many solar panel/s you need to charge the battery (W)
    • Choose the MPPT Solar Charge Controller/s to suit the system (A)
    • Choose an appropriately sized inverter to suit the load.

    Estimate the loads

    The first step is to determine what loads or appliances you will be running and for how long? This is calculated by. the power rating of the appliance (W) multiplied by the average runtime (hr). Alternatively, use the average current draw (A) multiplied by average runtime (hr).

    • Energy required in Watt hours (Wh) = Power (W) x Time (hrs)
    • Energy required in Amp hours (Ah) = Amps (A) x Time (hrs)

    Once this is calculated for each appliance or device, then the total energy requirement per day can be determined as shown in the attached load table.

    Sizing the Battery

    The total load in Ah or Wh load is used to size the battery. Lead-acid batteries are sized in Ah while lithium batteries are sized in either Wh or Ah. The allowable daily depth of discharge (DOD) is very different for lead-acid and lithium, see more details about lead-acid Vs lithium batteries. In general, lead-acid batteries should not be discharged below 70% SoC (State of Charge) on a daily basis, while Lithium (LFP) batteries can be discharged down to 20% SoC on a daily basis. Note: Lead-acid (AGM or GEL) batteries can be deeply discharged, but this will severely reduce the life of the battery if done regularly.

    For example: If you have a 30Ah daily load, you will need a minimum 100Ah lead-acid battery or a 40Ah lithium battery. However, taking into account poor weather, you will generally require at least two days of autonomy. so this equates to a 200Ah lead-acid battery or an 80Ah lithium. Depending on your application, location, and time of year, you may even require 3 or 4 days of autonomy.

    Sizing the Solar

    The solar size (W) should be large enough to fully charge the battery on a typical sunny day in your location. There are many variables to consider including panel orientation, time of year shading issues. This is actually quite complex, but one way to simplify things it to roughly work out how many watts are required to produce 20% of the battery capacity in Amps. Oversizing the solar array is also allowed by some manufacturers to help overcome some of the losses. Note that you can use our free solar design calculator to help estimate the solar generation for different solar panel tilt angles and orientations.

    Solar sizing Example: Based on the 20% rule, A 12V, 200Ah battery will need up to 40Amps of charge. If we are using a common 250W solar panel, then we can do a basic voltage and current conversion:

    Using the equation (P/V = I) then 250W / 12V battery = 20.8A

    In this case, to achieve a 40A charge we would need at least 2 x 250W panels. Remember there are several loss factors to take into account so slightly oversizing the solar is a common practice. See more about oversizing solar below.

    Solar Charge controller Sizing (A)

    The MPPT solar charge controller size should be roughly matched to the solar size. A simple way to work this out is using the power formula:

    Power (W) = Voltage x Current or (P = VI)

    If we know the total solar power in watts (W) and the battery voltage (V), then to work out the maximum current (I) in Amps we re-arrange this to work out the current. so we use the rearranged formula:

    Current (A) = Power (W) / Voltage or (I = P/V)

    For example: if we have 2 x 200W solar panels and a 12V battery, then the maximum current = 400W/12V = 33Amps. In this example, we could use either a 30A or 35A MPPT solar charge controller.

    Selecting a battery inverter

    Battery inverters are available in a wide range of sizes determined by the inverter’s continuous power rating measured in kW (or kVA). importantly, inverters are designed to operate with only one battery voltage which is typically 12V, 24V or 48V. Note that you cannot use a 24V inverter with a lower 12V or higher 48V battery system. Pro-tip, it’s more efficient to use a higher battery voltage.

    Besides the battery voltage, the next key criteria for selecting a battery inverter are the average continuous AC load (demand) and short-duration peak loads. Due to temperature de-rating in hot environments, the inverter should be sized slightly higher than the load or power demand of the appliances it will be powering. Whether the loads are inductive or resistive is also very important and must be taken into account. Resistive loads such as electric kettles or toasters are very simple to power, while inductive loads like water pumps and compressors put more stress on the inverter. In regards to peak loads, most battery inverters can handle surge loads up to 2 x the continuous rating.

    Inverter sizing example:

    • Average continuous loads = 120W (fridge) 40W (lights) TV (150W) = 310W
    • High or surge loads = 2200W (electric kettle) toaster (800W) = 3000W Considering the above loads, a 2400W inverter (with 4800 peak output) would be adequate for the smaller continuous loads and easily power the short-duration peak loads.

    ATTENTION SOLAR DESIGNERS. Learn more about selecting off-grid inverters and sizing solar systems in our advanced technical off-grid system design guide.

    MPPT Solar Oversizing

    Due to the various losses in a solar system, it is common practice to oversize the solar array to enable the system to generate more power during bad weather and under various conditions, such as high temperatures where power derating can occur. The main loss factors include. poor weather (low irradiation), dust and dirt, shading, poor orientation, and cell temperature de-rating. Learn more about solar panel efficiency and cell temperature de-rating here. These loss factors combined can reduce power output significantly. For example, a 300W solar panel will generally produce 240W to 270W on a hot summer day due to the high-temperature power de-rating. Depending on your location, reduced performance will also occur in winter due to low solar irradiance. For these reasons, oversizing the solar array beyond the manufacturers ‘recommended or nominal value’ will help generate more power in unfavourable conditions.

    Oversizing by 150% (Nominal rating x 1.5) is possible on many professional MPPT solar charge controllers and will not damage the unit. However, many cheaper MPPT charge controllers are not designed to operate at full power for a prolonged amount of time, as this can damage the controller. Therefore, it is essential to check whether the manufacturer allows oversizing. Morningstar and Victron Energy allow oversizing well beyond the nominal values listed on the datasheets as long as you don’t exceed the input voltage and current limits. Victron MPPT controllers have been successfully used with 200% solar oversizing without any issues. However, the higher the oversizing, the longer the controller will operate at full power and the more heat it will generate. Without adequate ventilation, excess heat may result in the controller overheating and derating power or, in a worst-case scenario, complete shutdown or even permanent damage. Therefore always ensure adequate clearance around the controller according to the manufacturer’s specifications, and add fan-forced ventilation if required.

    Warning. you must NEVER exceed the maximum INPUT voltage (Voc) or maximum input current rating of the solar charge controller!

    IMPORTANT. Oversizing solar is only allowed on some MPPT solar charge controllers, such as those from Victron Energy, Morningstar and EPever. Oversizing on other models could void your warranty and result in damage or serious injury to persons or property. always ensure the manufacturer allows oversizing and never exceed the maximum input voltage or current limits.

    about Solar Sizing

    As previously mentioned, all solar charge controllers are limited by the maximum input voltage (V. Volts) and maximum charge current (A – Amps). The maximum voltage determines how many panels can be attached (in series), and the current rating will determine the maximum charge current and, in turn, what size battery can be charged.

    As described in the guide earlier, the solar array should be able to generate close to the charge current of the controller, which should be sized correctly to match the battery. Another example: a 200Ah 12V battery would require a 20A solar charge controller and a 250W solar panel to generate close to 20A. (Using the formula P/V = I, then we have 250W / 12V = 20A).

    As shown above, a 20A Victron 100/20 MPPT solar charge controller together with a 12V battery can be charged with a 290W ‘nominal’ solar panel. Due to the losses described previously, it could also be used with a larger ‘oversized’ 300W to 330W panel. The same 20A Victron charge controller used with a 48V battery can be installed with a much larger solar array with a nominal size of 1160W.

    Compared to the Victron MPPT charge controller above, the Rover series from Renogy does not allow solar oversizing. The Rover spec sheet states the ‘Max. Solar input power’ as above (not the nominal input power). Oversizing the Rover series will void the warranty. Below is a simple guide to selecting a solar array to match various size batteries using the Rover series MPPT charge controllers.

    20A Solar Charge Controller. 50Ah to 150Ah battery

    • 20A/100V MPPT. 12V battery = 250W Solar (1 x 260W panels)
    • 20A/100V MPPT. 24V battery = 520W Solar (2 x 260W panels)
    • 40A/100V MPPT. 12V battery = 520W Solar (2 x 260W panels)
    • 40A/100V MPPT. 24V battery = 1040W Solar (4 x 260W panels)

    Remember that only selected manufacturers allow the solar array to be oversized, as long as you do not exceed the charge controller’s max voltage or current rating. always refer to manufacturers’ specifications and guidelines.

    solar charge controller Price guide

    The older, simple PWM, or pulse width modulation, charge controllers are the cheapest type available and cost as little as 40 for a 10A unit. In contrast, the more efficient MPPT charge controllers will cost anywhere from 80 to 2500, depending on the voltage and current (A) rating. All solar charge controllers are sized according to the charge current, which ranges from 10A up to 100A. Cost is directly proportional to the charge current and maximum voltage (Voc), with the higher voltage and current controllers being the most expensive.

    A general guide to the cost of different size solar charge controllers:

    • PWM 100V Solar controllers up to 20A. 40 to 120
    • MPPT 100V Solar controllers up to 20A. 90 to 200
    • MPPT 150V Solar controllers up to 40A. 200 to 400
    • MPPT 150V Solar controllers up to 60A. 400 to 800
    • MPPT 250V Solar controllers up to 80A. 800 to 1200
    • MPPT 300V Solar controllers up to 100A. 900 to 1500
    • MPPT 600V Solar controllers up to 100A. 1600 to 2800

    About the Author

    Jason Svarc is a CEC-accredited off-grid solar power system specialist who has been designing and building off-grid power systems since 2010. During this time, he also taught the stand-alone power systems design course at Swinburne University (Tafe). Living in an off-grid home for over 12 years and having designed, installed and monitored dozens of off-grid systems, he has gained vast experience and knowledge of what is required to build reliable, high-performance off-grid solar systems.


    This is to be used as a guide only. Before making any purchases or undertaking any solar/battery related installations or modifications, you must refer to all manufacturer’s specifications and installation manuals. All work must be done by a qualified person.

    What Is an MPPT Solar Charge Controller How Does It Work?

    Off-grid solar power systems collect the sun’s energy, convert it into electricity, and then store it in batteries so the user can draw power from it as needed. To run efficiently, you need to maximize the charge to the battery. Optimizing battery performance means more than just connecting the panel to the battery; you need to control the charge going into the battery.

    Different tools are available to do this. Of the options available, the most efficient device to control the charge flowing into your battery is an MPPT charge controller.

    MPPT Charge Controller in the EcoFlow Power Kit

    What Is an MPPT Solar Charge Controller?

    When your solar panels collect solar energy, the process produces a higher output than your batteries can handle. For your system to work, you need to control the flow into the battery to get the most efficient flow and storage possible. A charge controller accomplishes this for your system.

    The delivery from your panel to the battery in your system comes with voltage and amperage. Voltage measures the pressure of electrons in the system, and amperage measures the flow or current of those volts. Together, these create power, measured in watts. Getting the most power requires maximizing the combination of volts and amps running through your solar system.

    The MPPT solar charge controller is a DC-to-DC converter for your solar power system. It receives voltage from the solar panels and converts it to charge your battery at a more appropriate level. The optimization helps you avoid losing some energy your system captures and generates, maximizing what you can store and use.

    MPPT stands for Maximum Power Point Tracking. A solar panel has different electric output and different maximum efficiency levels. The efficiency depends on numerous factors, such as the time of day, Cloud cover, and temperature of the panels. The MPPT identifies the point at which your system gets maximum efficiency.

    You can buy an MPPT separately if you’re building your own solar energy system. However, some products, like the EcoFlow Power Kits, come with MPPT solar charge controllers built into the system, including a DC-DC battery charger with MPPT and two additional solar charge controllers.

    Check the product details of your solar generator or portable power station to see if the charge controller comes included or must be purchased separately. Be careful to ensure all the components in your system are compatible, particularly if you’re mixing and matching from different manufacturers.

    How Does the MPPT Charge Controller Work?

    Your solar power system operates at the highest efficiency when it matches up with the levels of your batteries. If the power input goes too high, you lose most of that energy. If it goes too low, though, you won’t get the benefit of storing enough energy to make it work. You need the right balance for your system at any time.

    The right combination of amps and volts is necessary to get the maximum wattage from your solar system. Wattage is the product of amps times volts. If your battery can only hold 12 volts, the amperage must be high enough to reach the total wattage your panel should produce.

    Manually figuring this out can be complicated. The panel needs to put out more than the battery voltage to balance, so the numbers are not one-to-one. The maximum power point represents the correct balance of voltage and amperage to generate the most power from your solar panel — the point at which your system loses the least solar energy while converting and transferring it through your system.

    Beyond that, the optimal system amperage and voltage levels fluctuate throughout the day. The angle of the sun hitting your panels plays a role here. Cloud cover, precipitation, and temperatures also affect the levels you need, and thus the ideal combination of voltage and amperage for your system. A person can’t just run a calculation to navigate all of that.

    This is where an MPPT is critical. The charge controller monitors all of these inputs digitally and constantly tracks the optimal levels. It then regulates the current from the panel and the voltage into the battery. It continually adjusts those levels to move you as close as possible to the maximum power point in each given moment for your system to operate most efficiently.

    What Is the Difference Between MPPT and PWM Solar Charge Controller?

    The MPPT solar charge controller is one of two primary kinds of charge controllers on the market. The alternative is a pulse width modulation or PWM charge controller. A PWM functions with a transistor that rapidly opens and closes to modulate the panels’ current.

    The primary difference between the two kinds of solar charge controllers is that while the MPPT controller modulates both the voltage and the current, the PWM controller only affects the current. Since it reduces amperage without being able to affect voltage, it can’t impact the overall wattage other than to decrease from the highest output rating for your panels.

    In other words, while an MPPT controller regulates optimal power output, the PWM controller only allows you to reduce the current going into the battery. Every solar panel comes with a standard rating for the wattage it can deliver. A PWM controller reduces the performance of each panel you have without the adjustments an MPPT controller can make to rebalance and make up the difference.

    No solar system is 100 percent efficient. Depending on how the panel is set up and aligned, it usually converts only 15-20% of the sunlight it absorbs into electricity. EcoFlow’s rigid solar panels yield 23% conversion rate efficiency — amongst the best on the market. A PWM controller loses more energy as heat than an MPPT controller and fails to help you get the most from your system by only impacting half of the power equation.

    Benefits of an MPPT Solar Charge Controller

    The efficiency and performance of your solar generator significantly increase when you use an MPPT controller. It yields numerous benefits that help you save money and recoup your initial investment in your solar power system more quickly.

    Efficient Power Transfer

    Either type of solar charge converter affects the electric current from solar panels to the battery. The current is critical since the battery can only hold so much power at a time. Sending too wide a current to the battery will mean most of the energy is lost. But because the MPPT manages the voltage and the amperage, it allows your system to store more of the rated wattage for your solar panels.

    Greater efficiency is critical to getting the most from your system and meeting your electricity needs from your solar power array.

    Less Dependent on Weather

    A key to solar power effectively meeting your energy needs is storing energy to use when the sun isn’t shining on your solar panels.

    On cloudy days, the maximum power point changes throughout the day. The more time you miss that optimal balance, the less effectively your system can operate. The MPPT controller adjusts to environmental changes and helps your system maintain the best possible output.

    Fewer Panels Needed

    When you get more power from each solar panel, you may need fewer panels to deliver the energy you need. On the most basic level, this lets you save money by buying a smaller solar array.

    Fewer solar panels also give you more flexibility with placement. You can FOCUS your solar panels on the parts of your roof best positioned to absorb and convert sunlight into electric power.

    Effective for Large Systems

    As your system grows, getting better output from each solar panel becomes more critical. For multiple-panel solar arrays, the difference can become staggering.

    Given the inevitable energy loss from the time the sunlight hits your panels to the power running through your system, improvements for each panel pay substantial dividends across your array and over time. Using an MPPT controller for large sets of panels will significantly amplify the power you can access and use.

    Return on Investment

    An MPPT solar charge controller costs more than a PWM controller. What you give up in up-front cost, though, you gain in functionality.

    When you consider any solar energy system pays dividends through reduced energy costs and a much smaller carbon footprint that you leave behind, an MPPT solar charge controller helps you realize these benefits. It lets you receive the benefits sooner and more completely than its rival PWM controller.

    Are MPPT Solar Charge Controllers Worth it?

    Any time you weigh whether a major purchase is worth the cost, the answer depends on your usage, your needs, and the magnitude of the differences among options for that purchase. For an MPPT controller, it comes down to whether your benefits, including increased energy production, are enough to justify the additional cost over time.

    The answer may be no if you have a minimal system — such as a River Pro solar generator for camping. Similarly, if you seldom experience rainy or cloudy weather, the fine-tuned calibration and frequent adjustments delivered by an MPPT controller may not provide a significant enough advantage to justify the additional cost. The extra power you gain may be minimal, so it could take much longer to see the cost savings you would eventually expect from using an MPPT charge controller.

    Absent those circumstances, though, an MPPT solar charge controller gives you significant advantages that pay off over time. It lets you get the most out of your system, avoid lost energy, and maintain peak delivery throughout the year.

    The more efficiently you generate and store energy, the more quickly your initial investment will pay off financially. An MPPT solar charge controller gets you to a positive ROI more quickly.


    Your solar energy system represents a significant investment for your home, and an MPPT controller helps you increase your return on that investment.

    Shop EcoFlow today for solar power systems that integrate MPPT controllers. Our Power Kits provide the highest quality components so your solar power system can best deliver on your needs.

    EcoFlow is a portable power and renewable energy solutions company. Since its founding in 2017, EcoFlow has provided peace-of-mind power to customers in over 85 markets through its DELTA and RIVER product lines of portable power stations and eco-friendly accessories.

    Leave a Reply

    Your email address will not be published. Required fields are marked *